The S-STEM supported program “Achieving Change in our Communities for Equity and Student Success” (ACCESS) in STEM started at the University of Washington Tacoma in 2018 and has supported 108 students over 6 cohorts. University of Washington Tacoma has been designated an Asian American and Native American Pacific Islander-serving institution (AANAPISI) due to our high proportion of racial minority and first generation college students. The program is multidisciplinary across STEM majors including Mathematics, Environmental Science, Biomedical Sciences, Information Technology, Computer Science and Systems, Computer Engineering and Systems, Electrical Engineering, Mechanical Engineering, and Civil Engineering, with Computer Science, IT and Engineering representing 65% of ACCESS scholars to date. Program scholars receive full scholarships for their first two years, and partial scholarships for their third and fourth years. We provide a summer bridge precalculus or research experience course, and project-based Introduction to Engineering or Introduction to Research courses in students’ first year. Individual faculty mentoring, an on-campus STEM living learning community,and quarterly Success in STEM seminar courses help scholars form a cohesive community through group mentoring, to promote a sense of belonging, identity, and empowerment in the STEM community. Our S-STEM program is distinctive in focusing on pre-STEM majors in their first and second years on campus to facilitate the entry into STEM majors, and we provide mentor training for ~30-40 faculty in teaching and mentoring diverse student populations, thus impacting all students in our majors. Our goal was to evaluate how retention and academic success of our program scholars was impacted by the program, and whether this program helps to close equity gaps for students who identify as low socioeconomic status, underrepresented minorities, women or non-binary, or first generation in college . We also evaluated the impact of the program for students before, during, and after the Covid-19 pandemic. We compared our program scholars to a comparison group of students who met eligibility requirements but did not participate in the program. Overall, program scholars had higher first and second year retention, and significantly higher GPAs, particularly for individuals belonging to groups that are historically underrepresented in STEM. Retention was markedly higher for program scholars during the pandemic, suggesting that the program may have been particularly impactful for students as they endured the emotional and financial stresses of the pandemic.
more »
« less
Relative Impact of Values-Oriented and Mindset-Oriented Interventions on Academic Success of Introductory Biology Students Attending 2-Year or 4-Year Institutions
ABSTRACT Diversifying the STEM workforce is a national priority, yet white males continue to dominate the ranks of professional scientists and engineers in the United States. This is partly due to disparities in academic success for women and minoritized students in prerequisite introductory STEM courses, leading to higher attrition from B.S. degree programs. Past research has demonstrated that when social-psychological interventions targeting “stereotype threat” or “fixed” mindsets are implemented in STEM courses, equity gaps may be significantly reduced. We incorporated two such interventions into introductory biology courses for life science B.S. majors and Associate’s degree allied health students taught at a regional research university and a community college. We observed no significant effects of the values-affirmation interventions on grade outcomes for students in any of the courses, regardless of students' gender identity, race/ethnicity, or first-generation status, suggesting that students, on average, were not experiencing stereotype threat on either campus. We found a significant positive association between completing more weekly reflective journal entries and higher mean content-based grades for students in the university majors course overall, especially first-generation students, although the association was significantly negative for women. Our results confirm that context matters when implementing interventions aimed at reducing achievement gaps, and we propose that educators assess their students’ social-psychological characteristics and then select interventions accordingly.
more »
« less
- Award ID(s):
- 1920315
- PAR ID:
- 10436975
- Editor(s):
- Parks, Samantha T.
- Date Published:
- Journal Name:
- Journal of Microbiology & Biology Education
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1935-7877
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Prior research has demonstrated that women and racial minority undergraduate students experience stereotype threat in unwelcoming STEM classrooms in predominantly White institutions. Drawing from focus group and journal entry data with Latinx and African American undergraduate students (N= 52) majoring in a STEM field at an institution that holds both Hispanic Serving Institution (HSI) and AANAPISI designations in Southern California, we find that Latinx and Black undergraduate students narrate exclusion from faculty and peers in four main ways: (1) exclusionary STEM classroom culture fomented by faculty, (2) study group stereotype threat, (3) nuances in Black student undergraduate experiences, and (4) unaddressed gendered discrimination. We find that Latinx and African American undergraduates enrolled at a minority serving institution highlight that STEM faculty foment stereotype threat in their classroom culture, which trickles down to students and negatively impacts their ability to develop the necessary social capital networks with both faculty and peers to succeed.more » « less
-
Gate-keeping courses provide students with their first and formal exposure to a deep understanding of science. Such courses influence students' decision to pursue STEM education and continue their college experience. Our records indicate that the many STEM students perform poorly or marginally in the introductory required courses and decide to change their major to non-STEM degree programs. One way to address this is using active learning techniques. The objective of this paper is to describe our experiences with the use of few of the active learning techniques in introductory computer programming courses offered in our Computer Science Program. One of these programming courses are required of all computer science majors and other course is usually taken by engineering, technology and science majors. The findings presented in this paper may be used by interested parties involved in STEM curriculum.more » « less
-
This project uses an ecological belonging intervention approach [1] that requires one-class or one- recitation/discussion session to implement and has been shown to erase long-standing equity gaps in achievement in introductory STEM courses. However, given the wide social and cultural heterogeneity across US university contexts (e.g., differences in regional demographics, history, political climates), it is an open question if and how the intervention may scale. This project brings together an interdisciplinary team across three strategically selected universities to design, test, and iteratively improve an approach to systematically identify which first and second year courses would most benefit from the intervention, reveal student concerns that may be specific to that course, adapt the intervention to address those concerns, and evaluate the universality versus specificity of the intervention across university contexts. This systematic approach also includes persuasion and training processes for onboarding the instructors of the targeted courses. The instructor onboarding and the intervention adaptation processes are guided by a theory-of-action that is the backbone of the project’s research activities and iterative process improvement. A synergistic mixture of qualitative and quantitative methods is used throughout the study. In this paper, we describe our theoretical framing of this ecological belonging intervention and the current efforts of the project in developing customized student stories for the intervention. We have conducted focus groups across each of the partner institutions (University of Pittsburgh, Purdue University, and University of California Irvine). We describe the process of developing these contextually relevant stories and the lessons learned about how this ecological belonging intervention can be translated across institutional contexts and for various STEM majors and systemically minoritized populations. The results of this work can provide actionable strategies for reducing equity gaps in students' degree attainment and achievement in engineering.more » « less
-
Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM at the University of Washington Tacoma started as a Track 1 S-STEM program in 2018 and has supported 69 students to date. This year we received Track 2 funding and welcomed our fifth cohort to campus, with funding to support ~32 additional students through 2026. University of Washington Tacoma is an Asian American and Native American Pacific Islander-serving institution (AANAPISI), and we serve a high proportion of racial minority and first generation college students. Our ACCESS scholars are pursuing bachelor’s degrees in Mathematics, Environmental Science, Biomedical Sciences, Information Technology, Computer Science and Systems, Computer Engineering and Systems, Electrical Engineering, Mechanical Engineering, and Civil Engineering, with Computer Science and Engineering representing over 60% of ACCESS scholars to date. First-time college students and first-year transfer students receive full scholarships for their first two years, and partial scholarships for their third and fourth years. The project includes an optional Early Fall Math course to enhance entry into STEM majors, and participants are able to engage in a Research Experience or project-based Introduction to Engineering course in their first year. Coupled with individual faculty mentoring and an on-campus STEM living learning community, the quarterly Success in STEM seminar course helps scholars form a cohesive community through group mentoring, as well as develop a sense of belonging, identity, and empowerment to transform the culture of STEM. This program is distinguished by its focus on pre-STEM majors in their first and second years on campus, and includes mentor training for ~30-40 faculty in teaching and mentoring diverse student populations, thus impacting all students in our majors. Our goal was to evaluate the effectiveness of a program that focuses on the first two years of college and provides financial support, courses to introduce students to research and project-based engineering, and intensive mentoring in increasing retention and academic success for Computer Science and Engineering (CS+E) students, and whether this program helps to close equity gaps for CS+E students who are low socioeconomic status (SES), underrepresented minorities (URMs), female, and/or first generation in college (First Gen) students. We compared our student scholars to a comparison group of students who met eligibility requirements but did not participate in the program. Program scholars had higher first and second year retention, and had significantly higher GPAs. The pandemic resulted in significant social, emotional, and economic stresses for our program scholars, which may have heightened the impact of the ACCESS in STEM program.more » « less