Abstract The different proteins of any proteome evolve at enormously different rates. One of the primary factors influencing rates of protein evolution is expression level, with highly expressed proteins tending to evolve at slow rates. This phenomenon, known as the expression level–evolutionary rate (E–R) anticorrelation, has been attributed to the abundance‐dependent deleterious effects of misfolding or misinteraction. We have recently shown that secreted proteins either lack an E–R anticorrelation or exhibit a significantly reduced E–R anticorrelation. This effect may be due to the strict quality control to which secreted proteins are subject in the endoplasmic reticulum (which is expected to reduce the rate of misfolding and its deleterious effects) or to their extracellular location (expected to reduce the rate of misinteraction and its deleterious effects). Among secreted proteins, N‐glycosylated ones are under particularly strong quality control. Here, we investigate how N‐linked glycosylation affects the E–R anticorrelation. Strikingly, we observe apositiveE–R correlation among N‐glycosylated proteins. That is, N‐glycoproteins that are highly expressed evolve at faster rates than lowly expressed N‐glycoproteins, in contrast to what is observed among intracellular proteins. 
                        more » 
                        « less   
                    
                            
                            Extracellular Domains of Transmembrane Proteins Defy the Expression Level–Evolutionary Rate Anticorrelation
                        
                    
    
            Abstract Highly expressed proteins tend to evolve slowly, a trend known as the expression level–rate of evolution (E–R) anticorrelation. Whereas the reasons for this anticorrelation remain unclear, the most influential hypotheses attribute it to highly expressed proteins being subjected to strong selective pressures to avoid misfolding and/or misinteraction. In accordance with these hypotheses, work in our laboratory has recently shown that extracellular (secreted) proteins lack an E–R anticorrelation (or exhibit a weaker than usual E–R anticorrelation). Extracellular proteins are folded inside the endoplasmic reticulum, where enhanced quality control of folding mechanisms exist, and function in the extracellular space, where misinteraction is unlikely to occur or to produce deleterious effects. Transmembrane proteins contain both intracellular domains (which are folded and function in the cytosol) and extracellular domains (which complete their folding in the endoplasmic reticulum and function in the extracellular space). We thus hypothesized that the extracellular domains of transmembrane proteins should exhibit a weaker E–R anticorrelation than their intracellular domains. Our analyses of human, Saccharomyces and Arabidopsis transmembrane proteins allowed us to confirm our hypothesis. Our results are in agreement with models attributing the E–R anticorrelation to the deleterious effects of misfolding and/or misinteraction. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1818288
- PAR ID:
- 10337390
- Editor(s):
- Golding, Brian
- Date Published:
- Journal Name:
- Genome Biology and Evolution
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 1759-6653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            dos Reis, Mario (Ed.)Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abundance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using proteins’ melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, we use computational methods to compare the free energy of folding of pairs of human–mouse orthologous proteins with different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable.more » « less
- 
            ABSTRACT Polycystins are a family of conserved ion channels, mutations of which lead to one of the most common human genetic disorders, namely, autosomal dominant polycystic kidney disease. Schizosacchromyces pombe possesses an essential polycystin homologue, Pkd2, which directs Ca2+ influx on the cell surface in response to membrane tension, but its structure remains unsolved. Here, we analyzed the structure–function relationship of Pkd2 based on its AlphaFold-predicted structure. Pkd2 consists of three domains, the extracellular lipid-binding domain (LBD), nine-helix transmembrane domain (TMD) and C-terminal cytoplasmic domain (CCD). Our genetic and microscopy data revealed that LBD and TMD are essential for targeting Pkd2 to the plasma membrane from the endoplasmic reticulum. In comparison, CCD ensures the polarized distribution of Pkd2 by promoting its internalization and preventing its clustering in the eisosome, a caveolae-like membrane compartment. The domains of Pkd2 and their functions are conserved in other fission yeast species. We conclude that both extracellular and cytoplasmic domains of Pkd2 are crucial for its intracellular trafficking and function. We propose that mechanosensitive channels can be desensitized through either internalization or clustering in low-tension membrane compartments.more » « less
- 
            Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases containing three domains: an extracellular receptor domain, a single transmembrane helix, and an intracellular tyrosine kinase domain. FGFRs are activated by fibroblast growth factors (FGFs) as part of complex signal transduction cascades regulating angiogenesis, skeletal formation, cell differentiation, proliferation, cell survival, and cancer. We have developed the first recombinant expression system in E. coli to produce a construct of human FGFR2 containing its transmembrane and extracellular receptor domains. We demonstrate that the expressed construct is functional in binding heparin and dimerizing. Size exclusion chromatography demonstrates that the purified FGFR2 does not form a complex with FGF1 or adopts an inactive dimer conformation. Progress towards the successful recombinant production of intact FGFRs will facilitate further biochemical experiments and structure determination that will provide insight into how extracellular FGF binding activates intracellular kinase activity.more » « less
- 
            Protein misfolding is a recurring phenomenon that cells must manage; otherwise misfolded proteins can aggregate and become toxic should they persist. To counter this burden, cells have evolved protein quality control (PQC) mechanisms that manage misfolded proteins. Two classes of systems that function in PQC are chaperones that aid in protein folding and ubiquitin–protein ligases that ubiquitinate misfolded proteins for proteasomal degradation. How folding and degradative PQC systems interact and coordinate their respective functions is not yet fully understood. Previous studies of PQC degradation pathways in the endoplasmic reticulum and cytosol have led to the prevailing idea that these pathways require the activity of Hsp70 chaperones. Here, we find that involvement of the budding yeast Hsp70 chaperones Ssa1 and Ssa2 in nuclear PQC degradation varies with the substrate. In particular, nuclear PQC degradation mediated by the yeast ubiquitin–protein ligase San1 often involves Ssa1/Ssa2, but San1 substrate recognition and ubiquitination can proceed without these Hsp70 chaperone functions in vivo and in vitro. Our studies provide new insights into the variability of Hsp70 chaperone involvement with a nuclear PQC degradation pathway.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    