skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly Abundant Proteins Are Highly Thermostable
Highly abundant proteins tend to evolve slowly (a trend called E-R anticorrelation), and a number of hypotheses have been proposed to explain this phenomenon. The misfolding avoidance hypothesis attributes the E-R anticorrelation to the abundance-dependent toxic effects of protein misfolding. To avoid these toxic effects, protein sequences (particularly those of highly expressed proteins) would be under selection to fold properly. One prediction of the misfolding avoidance hypothesis is that highly abundant proteins should exhibit high thermostability (i.e., a highly negative free energy of folding, ΔG). Thus far, only a handful of analyses have tested for a relationship between protein abundance and thermostability, producing contradictory results. These analyses have been limited by 1) the scarcity of ΔG data, 2) the fact that these data have been obtained by different laboratories and under different experimental conditions, 3) the problems associated with using proteins’ melting energy (Tm) as a proxy for ΔG, and 4) the difficulty of controlling for potentially confounding variables. Here, we use computational methods to compare the free energy of folding of pairs of human–mouse orthologous proteins with different expression levels. Even though the effect size is limited, the most highly expressed ortholog is often the one with a more negative ΔG of folding, indicating that highly expressed proteins are often more thermostable.  more » « less
Award ID(s):
1817413 1818288
PAR ID:
10475908
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
dos Reis, Mario
Publisher / Repository:
Genome Biology and Evolution
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
15
Issue:
7
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Golding, Brian (Ed.)
    Abstract Highly expressed proteins tend to evolve slowly, a trend known as the expression level–rate of evolution (E–R) anticorrelation. Whereas the reasons for this anticorrelation remain unclear, the most influential hypotheses attribute it to highly expressed proteins being subjected to strong selective pressures to avoid misfolding and/or misinteraction. In accordance with these hypotheses, work in our laboratory has recently shown that extracellular (secreted) proteins lack an E–R anticorrelation (or exhibit a weaker than usual E–R anticorrelation). Extracellular proteins are folded inside the endoplasmic reticulum, where enhanced quality control of folding mechanisms exist, and function in the extracellular space, where misinteraction is unlikely to occur or to produce deleterious effects. Transmembrane proteins contain both intracellular domains (which are folded and function in the cytosol) and extracellular domains (which complete their folding in the endoplasmic reticulum and function in the extracellular space). We thus hypothesized that the extracellular domains of transmembrane proteins should exhibit a weaker E–R anticorrelation than their intracellular domains. Our analyses of human, Saccharomyces and Arabidopsis transmembrane proteins allowed us to confirm our hypothesis. Our results are in agreement with models attributing the E–R anticorrelation to the deleterious effects of misfolding and/or misinteraction. 
    more » « less
  2. Abstract The different proteins of any proteome evolve at enormously different rates. One of the primary factors influencing rates of protein evolution is expression level, with highly expressed proteins tending to evolve at slow rates. This phenomenon, known as the expression level–evolutionary rate (E–R) anticorrelation, has been attributed to the abundance‐dependent deleterious effects of misfolding or misinteraction. We have recently shown that secreted proteins either lack an E–R anticorrelation or exhibit a significantly reduced E–R anticorrelation. This effect may be due to the strict quality control to which secreted proteins are subject in the endoplasmic reticulum (which is expected to reduce the rate of misfolding and its deleterious effects) or to their extracellular location (expected to reduce the rate of misinteraction and its deleterious effects). Among secreted proteins, N‐glycosylated ones are under particularly strong quality control. Here, we investigate how N‐linked glycosylation affects the E–R anticorrelation. Strikingly, we observe apositiveE–R correlation among N‐glycosylated proteins. That is, N‐glycoproteins that are highly expressed evolve at faster rates than lowly expressed N‐glycoproteins, in contrast to what is observed among intracellular proteins. 
    more » « less
  3. Abstract Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc‐based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat‐denatured Nluc dyads and triads can be efficiently refolded by theE. coliHsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co‐chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins. 
    more » « less
  4. Protein misfolding is a recurring phenomenon that cells must manage; otherwise misfolded proteins can aggregate and become toxic should they persist. To counter this burden, cells have evolved protein quality control (PQC) mechanisms that manage misfolded proteins. Two classes of systems that function in PQC are chaperones that aid in protein folding and ubiquitin–protein ligases that ubiquitinate misfolded proteins for proteasomal degradation. How folding and degradative PQC systems interact and coordinate their respective functions is not yet fully understood. Previous studies of PQC degradation pathways in the endoplasmic reticulum and cytosol have led to the prevailing idea that these pathways require the activity of Hsp70 chaperones. Here, we find that involvement of the budding yeast Hsp70 chaperones Ssa1 and Ssa2 in nuclear PQC degradation varies with the substrate. In particular, nuclear PQC degradation mediated by the yeast ubiquitin–protein ligase San1 often involves Ssa1/Ssa2, but San1 substrate recognition and ubiquitination can proceed without these Hsp70 chaperone functions in vivo and in vitro. Our studies provide new insights into the variability of Hsp70 chaperone involvement with a nuclear PQC degradation pathway. 
    more » « less
  5. Petersson, E. J. (Ed.)
    The thioamide is a versatile replacement of the peptide backbone with altered hydrogen bonding and conformational preferences, as well the ability participate in energy and electron transfer processes. Semi-synthetic incorporation of a thioamide into a protein can be used to study protein folding or protein/protein interactions using these properties. Semi-synthesis also provides the opportunity to study the role of thioamides in natural proteins. Here we outline the semi-synthesis of a model protein, the B1 domain of protein G (GB1) with a thioamide at the N-terminus or the C-terminus. The thioamide is synthetically incorporated into a fragment by solid-phase peptide synthesis, whereas the remainder of the protein is recombinantly expressed. Then, the two fragments are joined by native chemical ligation. The explicit protocol for GB1 synthesis is accompanied by examples of applications with GB1 and other proteins in structural biology and protein misfolding studies. 
    more » « less