skip to main content


Title: A Capstone Project: Designing an IoT Threat Modeling to Prevent Cyber-attacks
The NTT (Nippon Telegraph and Telephone) Data Corporation report found that 80% of U.S. consumers are concerned about their smart home data security. The Internet of Things (IoT) technology brings many benefits to people's homes, and more people across the world are heavily dependent on the technology and its devices. However, many IoT devices are deployed without considering security, increasing the number of attack vectors available to attackers. Numerous Internet of Things devices lacking security features have been compromised by attackers, resulting in many security incidents. Attackers can infiltrate these smart home devices and control the home via turning off the lights, controlling the alarm systems, and unlocking the smart locks, to name a few. Attackers have also been able to access the smart home network, leading to data exfiltration. There are many threats that smart homes face, such as the Man-in-the-Middle (MIM) attacks, data and identity theft, and Denial of Service (DoS) attacks. The hardware vulnerabilities often targeted by attackers are SPI, UART, JTAG, USB, etc. Therefore, to enhance the security of the smart devices used in our daily lives, threat modeling should be implemented early on in developing any given system. This past Spring semester, Morgan State University launched a (senior) capstone project targeting undergraduate (electrical) engineering students who were thus allowed to research with the Cybersecurity Assurance and Policy (CAP) center for four months. The primary purpose of the capstone was to help students further develop both hardware and software skills while researching. For this project, the students mainly focused on the Arduino Mega Board. Some of the expected outcomes for this capstone project include: 1) understanding the physical board components, 2) learning how to attack the board through the STRIDE technique, 3) generating a Data Flow Diagram (DFD) of the system using the Microsoft threat modeling tool, 4) understanding the attack patterns, and 5) generating the threat based on the user's input. To prevent future threats and attacks from taking advantage of systems vulnerabilities, the practice of "threat modeling" is implemented. This method allows the analysis of potential attackers, including their goals and techniques, while also providing solutions and mitigation strategies. Although Threat modeling can be performed throughout the development of a system, implementing it during developmental stages will prevent further problems in the future. Threat Modeling is crucial because it will help identify any potential threat before it propagates in the system. Identifying threats and providing countermeasures will save both time and money while also keeping the consumers safe. As a result, students must grow to understand how essential detecting and preventing attacks are to protect consumer information systems and networks. At the end of this capstone project, students should take away hands-on skills in cyber defense.  more » « less
Award ID(s):
1955231
PAR ID:
10337442
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 Fall ASEE Middle Atlantic Section Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The number of smart home IoT (Internet of Things) devices has been growing fast in recent years. Along with the great benefits brought by smart home devices, new threats have appeared. One major threat to smart home users is the compromise of their privacy by traffic analysis (TA) attacks. Researchers have shown that TA attacks can be performed successfully on either plain or encrypted traffic to identify smart home devices and infer user activities. Tunneling traffic is a very strong countermeasure to existing TA attacks. However, in this work, we design a Signature based Tunneled Traffic Analysis (STTA) attack that can be effective even on tunneled traffic. Using a popular smart home traffic dataset, we demonstrate that our attack can achieve an 83% accuracy on identifying 14 smart home devices. We further design a simple defense mechanism based on adding uniform random noise to effectively protect against our TA attack without introducing too much overhead. We prove that our defense mechanism achieves approximate differential privacy. 
    more » « less
  2. In recent years, Internet of Things (IoT) devices have been extensively deployed in edge networks, including smart homes and offices. Despite the exciting opportunities afforded by the advancements in the IoT, it also introduces new attack vectors and vulnerabilities in the system. Existing studies have shown that the attack graph is an effective model for performing system-level analysis of IoT security. In this paper, we study IoT system vulnerability analysis and network hardening. We first extend the concept of attack graph to weighted attack graph and design a novel algorithm for computing a shortest attack trace in a weighted attack graph. We then formulate the network hardening problem. We prove that this problem is NP-hard, and then design an exact algorithm and a heuristic algorithm to solve it. Extensive experiments on 9 synthetic IoT systems and 2 real-world smart home IoT testbeds demonstrate that our shortest attack trace algorithm is robust and fast, and our heuristic network hardening algorithm is efficient in producing near optimal results compared to the exact algorithm. 
    more » « less
  3. The Internet of Things (IoT) are paradigm shift transforming embedded objects into a smart connected device, ready to sense, analyze and communicate information with other devices. Nowadays, IoT devices are widely used in smart home systems and smart grid systems at a high level of integration and automation. However, the increasing tendency of the smart device also leads to a problem of security. The recent exploitations of the connected smart devices’ vulnerabilities reinforce the importance of security implementation and integration at the system level. In this work, we propose some use cases to show the vulnerability of the smart bulb to different attacks. 
    more » « less
  4. With an increasing number of Internet of Things (IoT) devices present in homes, there is a rise in the number of potential infor- mation leakage channels and their associated security threats and privacy risks. Despite a long history of attacks on IoT devices in unprotected home networks, the problem of accurate, rapid detection and prevention of such attacks remains open. Many existing IoT protection solutions are cloud-based, sometimes ineffective, and might share consumer data with unknown third parties. This paper investigates the potential for effective IoT threat detection locally, on a home router, using AI tools combined with classic rule-based traffic-filtering algorithms. Our results show that with a slight rise of router hardware resources caused by machine learn- ing and traffic filtering logic, a typical home router instrumented with our solution is able to effectively detect risks and protect a typical home IoT network, equaling or outperforming existing popular solutions, with- out any effects on benign IoT functionality, and without relying on cloud services and third parties. 
    more » « less
  5. Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges. 
    more » « less