Internet of Things (IoT) devices have been increasingly deployed in smart homes to automatically monitor and control their environments. Unfortunately, extensive recent research has shown that on-path external adversaries can infer and further fingerprint people’s sensitive private information by analyzing IoT network traffic traces. In addition, most recent approaches that aim to defend against these malicious IoT traffic analytics cannot adequately protect user privacy with reasonable traffic overhead. In particular, these approaches often did not consider practical traffic reshaping limitations, user daily routine permitting, and user privacy protection preference in their design. To address these issues, we design a new low-cost, open source user-centric defense system—PrivacyGuard—that enables people to regain the privacy leakage control of their IoT devices while still permitting sophisticated IoT data analytics that is necessary for smart home automation. In essence, our approach employs intelligent deep convolutional generative adversarial network assisted IoT device traffic signature learning, long short-term memory based artificial traffic signature injection, and partial traffic reshaping to obfuscate private information that can be observed in IoT device traffic traces. We evaluate PrivacyGuard using IoT network traffic traces of 31 IoT devices from five smart homes and buildings. We find that PrivacyGuard can effectively prevent a wide range of state-of-the-art adversarial machine learning and deep learning based user in-home activity inference and fingerprinting attacks and help users achieve the balance between their IoT data utility and privacy preserving.
more »
« less
Attacking and Protecting Tunneled Traffic of Smart Home Devices
The number of smart home IoT (Internet of Things) devices has been growing fast in recent years. Along with the great benefits brought by smart home devices, new threats have appeared. One major threat to smart home users is the compromise of their privacy by traffic analysis (TA) attacks. Researchers have shown that TA attacks can be performed successfully on either plain or encrypted traffic to identify smart home devices and infer user activities. Tunneling traffic is a very strong countermeasure to existing TA attacks. However, in this work, we design a Signature based Tunneled Traffic Analysis (STTA) attack that can be effective even on tunneled traffic. Using a popular smart home traffic dataset, we demonstrate that our attack can achieve an 83% accuracy on identifying 14 smart home devices. We further design a simple defense mechanism based on adding uniform random noise to effectively protect against our TA attack without introducing too much overhead. We prove that our defense mechanism achieves approximate differential privacy.
more »
« less
- Award ID(s):
- 1936968
- PAR ID:
- 10175648
- Date Published:
- Journal Name:
- ACM Conference on Data and Application Security and Privacy
- Page Range / eLocation ID:
- 259 to 270
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The proliferation of smart home Internet of things (IoT) devices presents unprecedented challenges for preserving privacy within the home. In this paper, we demonstrate that a passive network observer (e.g., an Internet service provider) can infer private in-home activities by analyzing Internet traffic from commercially available smart home devices even when the devices use end-to-end transport-layer encryption . We evaluate common approaches for defending against these types of traffic analysis attacks, including firewalls, virtual private networks, and independent link padding, and find that none sufficiently conceal user activities with reasonable data overhead. We develop a new defense, “stochastic traffic padding” (STP), that makes it difficult for a passive network adversary to reliably distinguish genuine user activities from generated traffic patterns designed to look like user interactions. Our analysis provides a theoretical bound on an adversary’s ability to accurately detect genuine user activities as a function of the amount of additional cover traffic generated by the defense technique.more » « less
-
Extensive recent research has shown that it is surprisingly easy to infer Amazon Alexa voice commands over their network traffic data. To prevent these traffic analytics (TA)-based inference attacks, smart home owners are considering deploying virtual private networks (VPNs) to safeguard their smart speakers. In this work, we design a new machine learning-powered attack framework—VoiceAttack that could still accurately fingerprint voice commands on VPN-encrypted voice speaker network traffic. We evaluate VoiceAttack under 5 different real-world settings using Amazon Alexa and Google Home. Our results show that VoiceAttack could correctly infer voice command sentences with a Matthews Correlation Coefficient (MCC) of 0.68 in a closed-world setting and infer voice command categories with an MCC of 0.84 in an open-world setting by eavesdropping VPN-encrypted network traffic data. This presents a significant risk to user privacy and security, as it suggests that external on-path attackers could still potentially intercept and decipher users’ voice commands despite the VPN encryption. We then further examine the sensitivity of voice speaker commands to VoiceAttack. We find that 134 voice speaker commands are highly vulnerable to VoiceAttack. We also present a defense approach—VoiceDefense, which could inject inject appropriate traffic “noise” into voice speaker traffic. And our evaluation results show that VoiceDefense could effectively mitigate VoiceAttack on Amazon Echo and Google Home.more » « less
-
Smart home IoT devices are becoming increasingly popular. Modern programmable smart home hubs such as SmartThings enable homeowners to manage devices in sophisticated ways to save energy, improve security, and provide conveniences. Unfortunately, many smart home systems contain vulnerabilities, potentially impacting home security and privacy. This paper presents Vigilia, a system that shrinks the attack surface of smart home IoT systems by restricting the network access of devices. As existing smart home systems are closed, we have created an open implementation of a similar programming and configuration model in Vigilia and extended the execution environment to maximally restrict communications by instantiating device-based network permissions. We have implemented and compared Vigilia with forefront IoT-defense systems; our results demonstrate that Vigilia outperforms these systems and incurs negligible overhead.more » « less
-
Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network. In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites. We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browsermore » « less
An official website of the United States government

