skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: The K2 Galactic Archaeology Program Data Release 3: Age-abundance Patterns in C1–C8 and C10–C18
Abstract We present the third and final data release of the K2 Galactic Archaeology Program (K2 GAP) for Campaigns C1–C8 and C10–C18. We provide asteroseismic radius and mass coefficients, κ R and κ M , for ∼19,000 red giant stars, which translate directly to radius and mass given a temperature. As such, K2 GAP DR3 represents the largest asteroseismic sample in the literature to date. K2 GAP DR3 stellar parameters are calibrated to be on an absolute parallactic scale based on Gaia DR2, with red giant branch and red clump evolutionary state classifications provided via a machine-learning approach. Combining these stellar parameters with GALAH DR3 spectroscopy, we determine asteroseismic ages with precisions of ∼20%–30% and compare age-abundance relations to Galactic chemical evolution models among both low- and high- α populations for α , light, iron-peak, and neutron-capture elements. We confirm recent indications in the literature of both increased Ba production at late Galactic times as well as significant contributions to r -process enrichment from prompt sources associated with, e.g., core-collapse supernovae. With an eye toward other Galactic archeology applications, we characterize K2 GAP DR3 uncertainties and completeness using injection tests, suggesting that K2 GAP DR3 is largely unbiased in mass/age, with uncertainties of 2.9% (stat.) ± 0.1% (syst.) and 6.7% (stat.) ± 0.3% (syst.) in κ R and κ M for red giant branch stars and 4.7% (stat.) ± 0.3% (syst.) and 11% (stat.) ± 0.9% (syst.) for red clump stars. We also identify percent-level asteroseismic systematics, which are likely related to the time baseline of the underlying data, and which therefore should be considered in TESS asteroseismic analysis.  more » « less
Award ID(s):
2001869
PAR ID:
10337449
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the third APOKASC catalog, we present data for the complete sample of 15,808 evolved stars with APOGEE spectroscopic parameters and Kepler asteroseismology. We used 10 independent asteroseismic analysis techniques and anchor our system on fundamental radii derived from GaiaLand spectroscopicTeff. We provide evolutionary state, asteroseismic surface gravity, mass, radius, age, and the data used to derive them for 12,418 stars. This includes 10,036 exceptionally precise measurements, with median fractional uncertainties in ν max , Δν, mass, radius, and age of 0.6%, 0.6%, 3.8%, 1.8%, and 11.1%, respectively. We provide more limited data for 1624 additional stars that either have lower-quality data or are outside of our primary calibration domain. Using lower red giant branch (RGB) stars, we find a median age for the chemical thick disk of 9.14 ± 0.05(ran) ± 0.9(sys) Gyr with an age dispersion of 1.1 Gyr, consistent with our error model. We calibrate our red clump (RC) mass loss to derive an age consistent with the lower RGB and provide asymptotic GB and RGB ages for luminous stars. We also find a sharp upper-age boundary in the chemical thin disk. We find that scaling relations are precise and accurate on the lower RGB and RC, but they become more model dependent for more luminous giants and break down at the tip of the RGB. We recommend the use of multiple methods, calibration to a fundamental scale, and the use of stellar models to interpret frequency spacings. 
    more » « less
  2. Abstract Large-scale surveys open the possibility to investigate Galactic evolution both chemically and kinematically; however, reliable stellar ages remain a major challenge. Detailed chemical information provided by high-resolution spectroscopic surveys of the stars in clusters can be used as a means to calibrate recently developed chemical tools for age-dating field stars. Using data from the Open Cluster Abundances and Mapping survey, based on the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment 2 survey, we derive a new empirical relationship between open cluster stellar ages and the carbon-to-nitrogen ([C/N]) abundance ratios for evolved stars, primarily those on the red giant branch. With this calibration, [C/N] can be used as a chemical clock for evolved field stars to investigate the formation and evolution of different parts of our Galaxy. We explore how mixing effects at different stellar evolutionary phases, like the red clump, affect the derived calibration. We have established the [C/N]–age calibration for APOGEE Data Release 17 (DR17) giant star abundances to be log [ Age ( yr ) ] DR 17 = 10.14 ( ± 0.08 ) + 2.23 ( ± 0.19 ) [ C / N ] , usable for 8.62 ≤ log ( Age [ yr ] ) ≤ 9.82 , derived from a uniform sample of 49 clusters observed as part of APOGEE DR17 applicable primarily to metal-rich, thin- and thick-disk giant stars. This measured [C/N]–age APOGEE DR17 calibration is also shown to be consistent with asteroseismic ages derived from Kepler photometry. 
    more » « less
  3. Abstract In this study, we extend the dust-independent Hatzidimitriou relation between cluster age anddB−Rcolor difference between the red giant branch (RGB) and red clump to younger cluster ages. We perform membership analysis on 14 galactic open clusters using Gaia DR3 astrometry, then compute the difference in color of the RGB and red clumpdB−Rusing Gaia photometry. We also computedB−Rfor five fields surrounding Small Magellanic Cloud clusters. We find that the trend derived from older clusters does not extrapolate to younger ages and becomes double valued. We confirm thatdB−Ris independent of metallicity. Current stellar evolutionary isochrones do not quantitatively reproduce the trend and furthermore predict an increased color gap with a decrease in metallicity that is not echoed in the data. Integrated light models based on current isochrones exaggerate the color change over the ​​​​​​−0.5 < [Fe/H] < 0 interval at the few-percent level. 
    more » « less
  4. The vast majority of Milky Way stellar halo stars were likely accreted from a small number (<~3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained and predominantly relies on indirect dynamical mixing arguments or imprecise age measurements of stars associated with debris structures. Here, we aim to infer robust stellar ages for stars associated with galactic substructures to more directly constrain the merger history of the Galaxy. By combining kinematic, asteroseismic, and spectroscopic data where available, we infer stellar ages for a sample of 10 red giant stars that were kinematically selected to be within the stellar halo, a subset of which are associated with the Gaia–Enceladus–Sausage halo substructure, and compare their ages to 3 red giant stars in the Galactic disk. Despite systematic differences in both absolute and relative ages determined here, age rankings of stars in this sample are robust. Passing the same observable inputs to multiple stellar age determination packages, we measure a weighted average age for the Gaia–Enceladus–Sausage stars in our sample of 8+/-3 (stat.)+/-1 (sys.) Gyr. We also determine hierarchical ages using isochrones for the populations of Gaia–Enceladus–Sausage, in situ halo and disk stars, finding a Gaia–Enceladus–Sausage population age of 8.0+2.3-3.2 Gyr. Although we cannot distinguish hierarchical population ages of halo or disk structures with our limited data and sample of stars, this framework should allow a distinct characterization of Galactic substructures using larger stellar samples and additional data available in the near future 
    more » « less
  5. Although stellar radii from asteroseismic scaling relations agree at the percent level with independent estimates for main sequence and most first-ascent red giant branch stars, the scaling relations over-predict radii at the tens of percent level for the most luminous stars (R ≳ 30 R⊙). These evolved stars have significantly superadiabatic envelopes, and the extent of these regions increase with increasing radius. However, adiabaticity is assumed in the theoretical derivation of the scaling relations as well as in corrections to the large frequency separation. Here, we show that a part of the scaling relation radius inflation may arise from this assumption of adiabaticity. With a new reduction of Kepler asteroseismic data, we find that scaling relation radii and Gaia radii agree to within at least 2% for stars with R ≲ 30 R⊙, when treated under the adiabatic assumption. The accuracy of scaling relation radii for stars with 50 R⊙ ≲ R ≲ 100 R⊙, however, is not better than $$10~{{\ \rm per\ cent}}-15~{{\ \rm per\ cent}}$$ using adiabatic large frequency separation corrections. We find that up to one third of this disagreement for stars with R ≈ 100 R⊙ could be caused by the adiabatic assumption, and that this adiabatic error increases with radius to reach 10 % at the tip of the red giant branch. We demonstrate that, unlike the solar case, the superadiabatic gradient remains large very deep in luminous stars. A large fraction of the acoustic cavity is also in the optically thin atmosphere. The observed discrepancies may therefore reflect the simplified treatment of convection and atmospheres. 
    more » « less