skip to main content


Title: The Role of Eyewall Turbulent Transport in the Pathway to Intensification of Tropical Cyclones
In a tropical cyclone (TC), turbulence not only exists in the planetary boundary layer (PBL) but also can be generated above the PBL by the cloud processes in the eyewall and rainbands. It is found that the Hurricane Analysis and Forecast System (HAFS), a new multi-scale operational model for TC prediction, fails to capture the intense turbulent mixing in eyewall and rainband clouds due to a poor estimation of static stability in clouds. The problem is fixed by including the effects of multi-phase water in the stability calculation. Simulations of 21 TCs and tropical storms in the North Atlantic basin of 2016–2019 hurricane seasons totaling 118 forecast cycles show that the stability correction substantially improves HAFS's skill in predicting storm track and intensity. Analyses of HAFS's simulations of Hurricane Michael (2018) show that the positive tendency of vortex's tangential wind resulting from the radially inward transport of absolute vorticity dominates the eddy correlation tendencies induced by the model-resolved asymmetric eddies and serves as a main mechanism for the rapid intensification of Michael. The sub-grid scale (SGS) turbulent transport above the PBL in the eyewall plays a pivotal role in initiating a positive feedback among the eyewall convection, mean secondary overturning circulation, vortex acceleration via the inward transport of absolute vorticity, surface evaporation, and radial convergence of moisture in the PBL. Without the SGS transport above the PBL, the model-resolved vertical transport alone may not be sufficient in initiating the positive feedback underlying the rapid intensification of TCs.  more » « less
Award ID(s):
1822238
NSF-PAR ID:
10337555
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of geophysical research
Volume:
126
Issue:
17
ISSN:
2169-8996
Page Range / eLocation ID:
e2021JD034983
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The fundamental mechanism underlying tropical cyclone (TC) intensification may be understood from the conservation of absolute angular momentum, where the primary circulation of a TC is driven by the torque acting on air parcels resulting from asymmetric eddy processes, including turbulence. While turbulence is commonly regarded as a flow feature pertaining to the planetary boundary layer (PBL), intense turbulent mixing generated by cloud processes also exists above the PBL in the eyewall and rainbands. Unlike the eddy forcing within the PBL that is negative definite, the sign of eyewall/rainband eddy forcing above the PBL is indefinite and thus provides a possible mechanism to spin up a TC vortex. In this study, we show that the Hurricane Weather Research & forecasting (HWRF) model, one of the operational models used for TC prediction, is unable to generate appropriate sub-grid-scale (SGS) eddy forcing above the PBL due to lack of consideration of intense turbulent mixing generated by the eyewall and rainband clouds. Incorporating an in-cloud turbulent mixing parameterization in the PBL scheme notably improves HWRF's skills on predicting rapid changes in intensity for several past major hurricanes. While the analyses show that the SGS eddy forcing above the PBL is only about one-fifth of the model-resolved eddy forcing, the simulated TC vortex inner-core structure and the associated model-resolved eddy forcing exhibit a substantial dependence on the parameterized SGS eddy processes. The results highlight the importance of eyewall/rainband SGS eddy forcing to numerical prediction of TC intensification, including rapid intensification at the current resolution of operational models.

     
    more » « less
  2. Abstract

    Recent studies have demonstrated the sensitivity of simulated tropical cyclone (TC) intensity to horizontal diffusion in numerical models. It is unclear whether such sensitivity comes from the horizontal diffusion in or above the boundary layer. To address this issue, both an Ooyama-type model and a full-physics model are used to conduct sensitivity experiments with reduced or enlarged horizontal mixing length (lh) in the boundary layer and/or in the free atmosphere. Results from both models show that enlarging (reducing)lhthroughout the model domain considerably reduces (increases) the TC intensification rate and quasi-steady intensity. A new finding is that changinglhabove the boundary layer imposes a much greater influence than that in the boundary layer. Largelhabove the boundary layer is found to effectively reduce the radial gradient of tangential wind inside the radius of maximum tangential wind and thus the inward flux of absolute vorticity, reducing the positive tangential wind tendency and the TC intensification rate and the steady-state intensity. In contrast, although largerlhin the boundary layer reduces the boundary layer tangential wind tendency, it also leads to the more inward-penetrated inflow and thus enhances the inward flux of absolute vorticity, which offsets part of the direct negative contribution by horizontal diffusion, making the net change in tangential wind tendency not obvious. Results from three-dimensional simulations also show that the resolved eddies contribute negatively to TC spinup whenlhis small, while its effect weakens whenlhis enhanced either in or above the boundary layer.

     
    more » « less
  3. Abstract

    The landfall of Hurricane Michael (2018) at category-5 intensity occurred after rapid intensification (RI) spanning much of the storm’s lifetime. Four Hurricane Hunter aircraft missions observed the RI period with tail Doppler radar (TDR). Data from each of the 14 aircraft passes through the storm were quality controlled via a combination of interactive and machine-learning techniques. TDR data from each pass were synthesized using the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) variational wind retrieval technique to yield three-dimensional kinematic fields of the storm to examine inner-core processes during RI. Vorticity and angular momentum increased and concentrated in the eyewall region. A vorticity budget analysis indicates that the tendencies became more axisymmetric over time. In this study, we focus in particular on how the eyewall vorticity tower builds vertically into the upper levels. Horizontal vorticity associated with the vertical gradient of tangential wind was tilted into the vertical by the eyewall updraft to yield a positive vertical vorticity tendency inward atop the existing vorticity tower, which is further developed locally upward and outward along the sloped eyewall through advection and stretching. Observed maintenance of thermal wind balance from a thermodynamic retrieval shows evidence of a strengthening warm core, which aided in lowering surface pressure and further contributed to the efficient intensification in the latter stages of this RI event.

     
    more » « less
  4. The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem. 
    more » « less
  5. Abstract

    Intense tropical cyclones (TCs) often experience secondary eyewall formations and the ensuing eyewall replacement cycles. Better understanding of the underlying dynamics is crucial to make improvements to the TC intensity and structure forecasting. Radar imagery of some double-eyewall TCs and a real-case simulation study indicated that the barotropic instability (BI) across the moat (aka type-2 BI) may play a role in inner eyewall decay. A three-dimensional numerical study accompanying this paper pointed out that type-2 BI is able to withdraw the inner eyewall absolute angular momentum (AAM) and increase the outer eyewall AAM through the eddy radial transport of eddy AAM. This paper explores the reason why the eddy radial transport of eddy AAM is intrinsically nonzero. Linear and nonlinear shallow water experiments are performed and they produce expected evolutions under type-2 BI. It will be shown that only nonlinear experiments have changes in AAM over the inner and outer eyewalls, and the changes solely originate from the eddy radial transport of eddy AAM. This result highlights the importance of nonlinearity of type-2 BI. Based on the distribution of vorticity perturbations and the balanced-waves arguments, it will be demonstrated that the nonzero eddy radial transport of eddy AAM is an essential outcome from the intrinsic interaction between the mutually growing vortex Rossby waves across the moat under type-2 BI. The analyses of the most unstable mode support the findings and will further attribute the inner eyewall decay and outer eyewall intensification to the divergence and convergence of the eddy angular momentum flux, respectively.

     
    more » « less