skip to main content

This content will become publicly available on April 28, 2024

Title: On the Lateral Entrainment Instability in the Inner Core Region of Tropical Cyclones
Key Points Lateral entrainment of air from the moat region into eyewall and rainbands of a tropical cyclone (TC) satisfies the instability criterion Positive buoyancy flux induced by the entrainment is an important source of turbulent kinetic energy for the eyewall and rainband clouds Lateral entrainment instability should be included in turbulent mixing parameterizations in TC forecast models  more » « less
Award ID(s):
2211307 2211308
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The fundamental mechanism underlying tropical cyclone (TC) intensification may be understood from the conservation of absolute angular momentum, where the primary circulation of a TC is driven by the torque acting on air parcels resulting from asymmetric eddy processes, including turbulence. While turbulence is commonly regarded as a flow feature pertaining to the planetary boundary layer (PBL), intense turbulent mixing generated by cloud processes also exists above the PBL in the eyewall and rainbands. Unlike the eddy forcing within the PBL that is negative definite, the sign of eyewall/rainband eddy forcing above the PBL is indefinite and thus provides a possible mechanism to spin up a TC vortex. In this study, we show that the Hurricane Weather Research & forecasting (HWRF) model, one of the operational models used for TC prediction, is unable to generate appropriate sub-grid-scale (SGS) eddy forcing above the PBL due to lack of consideration of intense turbulent mixing generated by the eyewall and rainband clouds. Incorporating an in-cloud turbulent mixing parameterization in the PBL scheme notably improves HWRF's skills on predicting rapid changes in intensity for several past major hurricanes. While the analyses show that the SGS eddy forcing above the PBL is only about one-fifth of the model-resolved eddy forcing, the simulated TC vortex inner-core structure and the associated model-resolved eddy forcing exhibit a substantial dependence on the parameterized SGS eddy processes. The results highlight the importance of eyewall/rainband SGS eddy forcing to numerical prediction of TC intensification, including rapid intensification at the current resolution of operational models.

    more » « less
  2. In a tropical cyclone (TC), turbulence not only exists in the planetary boundary layer (PBL) but also can be generated above the PBL by the cloud processes in the eyewall and rainbands. It is found that the Hurricane Analysis and Forecast System (HAFS), a new multi-scale operational model for TC prediction, fails to capture the intense turbulent mixing in eyewall and rainband clouds due to a poor estimation of static stability in clouds. The problem is fixed by including the effects of multi-phase water in the stability calculation. Simulations of 21 TCs and tropical storms in the North Atlantic basin of 2016–2019 hurricane seasons totaling 118 forecast cycles show that the stability correction substantially improves HAFS's skill in predicting storm track and intensity. Analyses of HAFS's simulations of Hurricane Michael (2018) show that the positive tendency of vortex's tangential wind resulting from the radially inward transport of absolute vorticity dominates the eddy correlation tendencies induced by the model-resolved asymmetric eddies and serves as a main mechanism for the rapid intensification of Michael. The sub-grid scale (SGS) turbulent transport above the PBL in the eyewall plays a pivotal role in initiating a positive feedback among the eyewall convection, mean secondary overturning circulation, vortex acceleration via the inward transport of absolute vorticity, surface evaporation, and radial convergence of moisture in the PBL. Without the SGS transport above the PBL, the model-resolved vertical transport alone may not be sufficient in initiating the positive feedback underlying the rapid intensification of TCs. 
    more » « less
  3. Abstract

    The distribution of turbulent kinetic energy (TKE) and its budget terms is estimated in simulated tropical cyclones (TCs) of various intensities. Each simulated TC is subject to storm motion, wind shear, and oceanic coupling. Different storm intensities are achieved through different ocean profiles in the model initialization. For each oceanic profile, the atmospheric simulations are performed with and without TKE advection. In all simulations, the TKE is maximized at low levels (i.e., below 1 km) and ∼0.5 km radially inward of the azimuthal‐mean radius of maximum wind speed at 1‐km height. As in a previous study, the axisymmetric TKE decreases with height in the eyewall, but more abruptly in simulations without TKE advection. The largest TKE budget terms are shear generation and dissipation, though variability in vertical turbulent transport and buoyancy production affect the change in the azimuthal‐mean TKE distribution. The general relationships between the TKE budget terms are consistent across different radii, regardless of storm intensity. In terms of the asymmetric distribution in the eyewall, TKE is maximized in the front‐left quadrant where the sea surface temperature (SST) is highest and is minimized in the rear‐right quadrant where the SST is the lowest. In the category‐5 simulation, the height of the TKE maximum varies significantly in the eyewall between quadrants and is between ∼400 m in the rear‐right quadrant and ∼1,000 m in the front‐left quadrant. When TKE advection is included in the simulations, the maximum eyewall TKE values are downwind compared to the simulations without TKE advection.

    more » « less
  4. Abstract

    Intense tropical cyclones (TCs) often experience secondary eyewall formations and the ensuing eyewall replacement cycles. Better understanding of the underlying dynamics is crucial to make improvements to the TC intensity and structure forecasting. Radar imagery of some double-eyewall TCs and a real-case simulation study indicated that the barotropic instability (BI) across the moat (aka type-2 BI) may play a role in inner eyewall decay. A three-dimensional numerical study accompanying this paper pointed out that type-2 BI is able to withdraw the inner eyewall absolute angular momentum (AAM) and increase the outer eyewall AAM through the eddy radial transport of eddy AAM. This paper explores the reason why the eddy radial transport of eddy AAM is intrinsically nonzero. Linear and nonlinear shallow water experiments are performed and they produce expected evolutions under type-2 BI. It will be shown that only nonlinear experiments have changes in AAM over the inner and outer eyewalls, and the changes solely originate from the eddy radial transport of eddy AAM. This result highlights the importance of nonlinearity of type-2 BI. Based on the distribution of vorticity perturbations and the balanced-waves arguments, it will be demonstrated that the nonzero eddy radial transport of eddy AAM is an essential outcome from the intrinsic interaction between the mutually growing vortex Rossby waves across the moat under type-2 BI. The analyses of the most unstable mode support the findings and will further attribute the inner eyewall decay and outer eyewall intensification to the divergence and convergence of the eddy angular momentum flux, respectively.

    more » « less
  5. Abstract

    Secondary eyewall formation and the ensuing eyewall replacement cycles may take place in mature tropical cyclones (TCs) during part of their lifetime. A better understanding of the underlying dynamics is beneficial to improving the prediction of TC intensity and structure. Previous studies suggested that the barotropic instability (BI) across the moat (aka type-2 BI) can make a substantial contribution to the inner-eyewall decay through the associated eddy radial transport of absolute angular momentum (AAM). Simultaneously, the type-2 BI can also increase the AAM of the outer eyewall. While the previous studies focused on the early stage of the type-2 BI, this paper explores the long-term effect of the type-2 BI and the underlying processes in forced and unforced shallow-water experiments. Under the long-term effect, it will be shown that the inner eyewalls repeatedly weaken and strengthen (while the order is reversed for the outer eyewalls). Sensitivity tests are conducted to examine the sensitivity of the long-term effect of the type-2 BI to different vortex parameters and the strength of the parameterized diabatic heating. Implication of the long-term effect for the intensity changes of the inner and outer eyewalls of real TCs are also discussed.

    more » « less