skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metastable spiking networks in the replica-mean-field limit
Characterizing metastable neural dynamics in finite-size spiking networks remains a daunting challenge. We propose to address this challenge in the recently introduced replica-mean-field (RMF) limit. In this limit, networks are made of infinitely many replicas of the finite network of interest, but with randomized interactions across replicas. Such randomization renders certain excitatory networks fully tractable at the cost of neglecting activity correlations, but with explicit dependence on the finite size of the neural constituents. However, metastable dynamics typically unfold in networks with mixed inhibition and excitation. Here, we extend the RMF computational framework to point-process-based neural network models with exponential stochastic intensities, allowing for mixed excitation and inhibition. Within this setting, we show that metastable finite-size networks admit multistable RMF limits, which are fully characterized by stationary firing rates. Technically, these stationary rates are determined as the solutions of a set of delayed differential equations under certain regularity conditions that any physical solutions shall satisfy. We solve this original problem by combining the resolvent formalism and singular-perturbation theory. Importantly, we find that these rates specify probabilistic pseudo-equilibria which accurately capture the neural variability observed in the original finite-size network. We also discuss the emergence of metastability as a stochastic bifurcation, which can be interpreted as a static phase transition in the RMF limits. In turn, we expect to leverage the static picture of RMF limits to infer purely dynamical features of metastable finite-size networks, such as the transition rates between pseudo-equilibria.  more » « less
Award ID(s):
2113213
PAR ID:
10337566
Author(s) / Creator(s):
;
Editor(s):
Beck, Jeff
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
6
ISSN:
1553-7358
Page Range / eLocation ID:
e1010215
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by both theory and practice, we study how random pruning of the weights affects a neural network's neural tangent kernel (NTK). In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version. The equivalence is established under two cases. The first main result studies the infinite-width asymptotic. It is shown that given a pruning probability, for fully-connected neural networks with the weights randomly pruned at the initialization, as the width of each layer grows to infinity sequentially, the NTK of the pruned neural network converges to the limiting NTK of the original network with some extra scaling. If the network weights are rescaled appropriately after pruning, this extra scaling can be removed. The second main result considers the finite-width case. It is shown that to ensure the NTK's closeness to the limit, the dependence of width on the sparsity parameter is asymptotically linear, as the NTK's gap to its limit goes down to zero. Moreover, if the pruning probability is set to zero (i.e., no pruning), the bound on the required width matches the bound for fully-connected neural networks in previous works up to logarithmic factors. The proof of this result requires developing a novel analysis of a network structure which we called mask-induced pseudo-networks. Experiments are provided to evaluate our results. 
    more » « less
  2. Deterministic compartmental models for infectious diseases give the mean behaviour of stochastic agent-based models. These models work well for counterfactual studies in which a fully mixed large-scale population is relevant. However, with finite size populations, chance variations may lead to significant departures from the mean. In real-life applications, finite size effects arise from the variance of individual realizations of an epidemic course about its fluid limit. In this article, we consider the classical stochastic Susceptible-Infected-Recovered (SIR) model, and derive a martingale formulation consisting of a deterministic and a stochastic component. The deterministic part coincides with the classical deterministic SIR model and we provide an upper bound for the stochastic part. Through analysis of the stochastic component depending on varying population size, we provide a theoretical explanation of finite size effects. Our theory is supported by quantitative and direct numerical simulations of theoretical infinitesimal variance. Case studies of coronavirus disease 2019 (COVID-19) transmission in smaller populations illustrate that the theory provides an envelope of possible outcomes that includes the field data. 
    more » « less
  3. We describe the convex semi-infinite dual of the two-layer vector-output ReLU neural network training problem. This semi-infinite dual admits a finite dimensional representation, but its support is over a convex set which is difficult to characterize. In particular, we demonstrate that the non-convex neural network training problem is equivalent to a finite-dimensional convex copositive program. Our work is the first to identify this strong connection between the global optima of neural networks and those of copositive programs. We thus demonstrate how neural networks implicitly attempt to solve copositive programs via semi-nonnegative matrix factorization, and draw key insights from this formulation. We describe the first algorithms for provably finding the global minimum of the vector output neural network training problem, which are polynomial in the number of samples for a fixed data rank, yet exponential in the dimension. However, in the case of convolutional architectures, the computational complexity is exponential in only the filter size and polynomial in all other parameters. We describe the circumstances in which we can find the global optimum of this neural network training problem exactly with soft-thresholded SVD, and provide a copositive relaxation which is guaranteed to be exact for certain classes of problems, and which corresponds with the solution of Stochastic Gradient Descent in practice. 
    more » « less
  4. The dynamics of synaptic interactions within spiking neuron networks play a fundamental role in shaping emergent collective behavior. This paper studies a finite-size network of quadratic integrate-and-fire neurons interconnected via a general synaptic function that accounts for synaptic dynamics and time delays. Through asymptotic analysis, we transform this integrate-and-fire network into the Kuramoto-Sakaguchi model, whose parameters are explicitly expressed via synaptic function characteristics. This reduction yields analytical conditions on synaptic activation rates and time delays determining whether the synaptic coupling is attractive or repulsive. Our analysis reveals alternating stability regions for synchronous and partially synchronous firing, dependent on slow synaptic activation and time delay. We also demonstrate that the reduced microscopic model predicts the emergence of synchronization, weakly stable cyclops states, and non-stationary regimes remarkably well in the original integrate-and-fire network and its theta neuron counterpart. Our reduction approach promises to open the door to rigorous analysis of rhythmogenesis in networks with synaptic adaptation and plasticity. 
    more » « less
  5. We study a general setting of neutral evolution in which the population is of finite, constant size and can have spatial structure. Mutation leads to different genetic types (``traits"), which can be discrete or continuous. Under minimal assumptions, we show that the marginal trait distributions of the evolutionary process, which specify the probability that any given individual has a certain trait, all converge to the stationary distribution of the mutation process. In particular, the stationary frequencies of traits in the population are independent of its size, spatial structure, and evolutionary update rule, and these frequencies can be calculated by evaluating a simple stochastic process describing a population of size one (i.e. the mutation process itself). We conclude by analyzing mixing times, which characterize rates of convergence of the mutation process along the lineages, in terms of demographic variables of the evolutionary process. 
    more » « less