skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pruning has a disparate impact on model accuracy
Network pruning is a widely-used compression technique that is able to significantly scale down overparameterized models with minimal loss of accuracy. This paper shows that pruning may create or exacerbate disparate impacts. The paper sheds light on the factors to cause such disparities, suggesting differences in gradient norms and distance to decision boundary across groups to be responsible for this critical issue. It analyzes these factors in detail, providing both theoretical and empirical support, and proposes a simple, yet effective, solution that mitigates the disparate impacts caused by pruning.  more » « less
Award ID(s):
2143706 2133169
PAR ID:
10337616
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Post-processing immunity is a fundamental property of differential privacy: it enables arbitrary data-independent transformations to differentially private outputs without affecting their privacy guarantees. Post-processing is routinely applied in data-release applications, including census data, which are then used to make allocations with substantial societal impacts. This paper shows that post-processing causes disparate impacts on individuals or groups and analyzes two critical settings: the release of differentially private datasets and the use of such private datasets for downstream decisions, such as the allocation of funds informed by US Census data. In the first setting, the paper proposes tight bounds on the unfairness of traditional post-processing mechanisms, giving a unique tool to decision-makers to quantify the disparate impacts introduced by their release. In the second setting, this paper proposes a novel post-processing mechanism that is (approximately) optimal under different fairness metrics, either reducing fairness issues substantially or reducing the cost of privacy. The theoretical analysis is complemented with numerical simulations on Census data. 
    more » « less
  2. Existing pruning techniques preserve deep neural networks’ overall ability to make correct predictions but could also amplify hidden biases during the compression process. We propose a novel pruning method, Fairness-aware GRAdient Pruning mEthod (FairGRAPE), that minimizes the disproportionate impacts of pruning on different sub-groups. Our method calculates the per-group importance of each model weight and selects a subset of weights that maintain the relative between-group total importance in pruning. The proposed method then prunes network edges with small importance values and repeats the procedure by updating importance values. We demonstrate the effectiveness of our method on four different datasets, FairFace, UTKFace, CelebA, and ImageNet, for the tasks of face attribute classification where our method reduces the disparity in performance degradation by up to 90% compared to the state-of-the-art pruning algorithms. Our method is substantially more effective in a setting with a high pruning rate (99%). The code and dataset used in the experiments are available at https://github.com/Bernardo1998/FairGRAPE 
    more » « less
  3. Unstructured neural network pruning is an effective technique that can significantly reduce theoretical model size, computation demand and energy consumption of large neural networks without compromising accuracy. However, a number of fundamental questions about pruning are not answered yet. For example, do the pruned neural networks contain the same representations as the original network? Is pruning a compression or evolution process? Does pruning only work on trained neural networks? What is the role and value of the uncovered sparsity structure? In this paper, we strive to answer these questions by analyzing three unstructured pruning methods (magnitude based pruning, post-pruning re-initialization, and random sparse initialization). We conduct extensive experiments using the Singular Vector Canonical Correlation Analysis (SVCCA) tool to study and contrast layer representations of pruned and original ResNet, VGG, and ConvNet models. We have several interesting observations: 1) Pruned neural network models evolve to substantially different representations while still maintaining similar accuracy. 2) Initialized sparse models can achieve reasonably good accuracy compared to well engineered pruning methods. 3) Sparsity structures discovered by pruning models are not inherently important or useful. 
    more » « less
  4. Motivated by both theory and practice, we study how random pruning of the weights affects a neural network's neural tangent kernel (NTK). In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version. The equivalence is established under two cases. The first main result studies the infinite-width asymptotic. It is shown that given a pruning probability, for fully-connected neural networks with the weights randomly pruned at the initialization, as the width of each layer grows to infinity sequentially, the NTK of the pruned neural network converges to the limiting NTK of the original network with some extra scaling. If the network weights are rescaled appropriately after pruning, this extra scaling can be removed. The second main result considers the finite-width case. It is shown that to ensure the NTK's closeness to the limit, the dependence of width on the sparsity parameter is asymptotically linear, as the NTK's gap to its limit goes down to zero. Moreover, if the pruning probability is set to zero (i.e., no pruning), the bound on the required width matches the bound for fully-connected neural networks in previous works up to logarithmic factors. The proof of this result requires developing a novel analysis of a network structure which we called mask-induced pseudo-networks. Experiments are provided to evaluate our results. 
    more » « less
  5. Differential Privacy (DP) is an important privacy-enhancing technology for private machine learning systems. It allows to measure and bound the risk associated with an individual participation in a computation. However, it was recently observed that DP learning systems may exacerbate bias and unfairness for different groups of individuals. This paper builds on these important observations and sheds light on the causes of the disparate impacts arising in the problem of differentially private empirical risk minimization. It focuses on the accuracy disparity arising among groups of individuals in two well-studied DP learning methods: output perturbation and differentially private stochastic gradient descent. The paper analyzes which data and model properties are responsible for the disproportionate impacts, why these aspects are affecting different groups disproportionately, and proposes guidelines to mitigate these effects. The proposed approach is evaluated on several datasets and settings. 
    more » « less