skip to main content

Title: Standoff and Point Detection of Thin Polymer Layers Using Microcantilever Photothermal Spectroscopy
Standoff detection based on optical spectroscopy is an attractive method for identifying materials at a distance with very high molecular selectivity. Standoff spectroscopy can be exploited in demanding practical applications such as sorting plastics for recycling. Here, we demonstrate selective and sensitive standoff detection of polymer films using bi-material cantilever-based photothermal spectroscopy. We demonstrate that the selectivity of the technique is sufficient to discriminate various polymers. We also demonstrate in situ, point detection of thin layers of polymers deposited on bi-material cantilevers using photothermal spectroscopy. Comparison of the standoff spectra with those obtained by point detection, FTIR, and FTIR-ATR show relative broadening of peaks. Exposure of polymers to UV radiation (365 nm) reveal that the spectral peaks do not change with exposure time, but results in peak broadening with an overall increase in the background cantilever response. The sensitivity of the technique can be further improved by optimizing the thermal sensitivity of the bi-material cantilever and by increasing the number of photons impinging on the cantilever.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An accurate molecular identification of plastic waste is important in increasing the efficacy of automatic plastic sorting in recycling. However, identification of real-world plastic waste, according to their resin identification code, remains challenging due to the lack of techniques that can provide high molecular selectivity. In this study, a standoff photothermal spectroscopy technique, utilizing a microcantilever, was used for acquiring mid-infrared spectra of real-world plastic waste, including those with additives, surface contaminants, and mixed plastics. Analysis of the standoff spectral data, using Convolutional Neural Network (CNN), showed 100% accuracy in selectively identifying real-world plastic waste according to their respective resin identification codes. Standoff photothermal spectroscopy, together with CNN analysis, offers a promising approach for the selective characterization of waste plastics in Material Recovery Facilities (MRFs).

    more » « less
  2. Molecular-level spectroscopy is crucial for sensing and imaging applications, yet detecting and quantifying minuscule quantities of chemicals remains a challenge, especially when they surface-adsorb in low numbers. Here, we introduce a photothermal spectroscopic technique that enables the sensing and quantification of adsorbates with an attogram detection limit. Our approach utilizes the Seebeck effect in a microfabricated nanoscale thermocouple junction, incorporated into the apex of a microcantilever. We observe minimal thermal mass exhibited by the sensor which maintains exceptional thermal insulation. The temperature variation driving the thermoelectric junction arises from the non-radiative decay of molecular adsorbates' vibrational states on the tip. We demonstrate the detection of physisorbed trinitrotoluene (TNT) and dimethyl methylphosphonate (DMMP) molecules, as well as representative polymers, with an estimated mass sensitivity of 10-18 g and a temperature resolution of 40 mK. 
    more » « less
  3. null (Ed.)
    Aptamer-immobilized graphene field-effect transistors (GFETs) have become a well-known detection platform in the field of biosensing with various biomarkers such as proteins, bacteria, virus, as well as chemicals. A conventional aptamer immobilization technique on graphene involves a two-step crosslinking process. In the first step, a pyrene derivative is anchored onto the surface of graphene and, in the second step, an amine-terminated aptamer is crosslinked to the pyrene backbone with EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide) chemistry. However, this process often requires the use of organic solvents such as dimethyl formamide (DMF) or dimethyl sulfoxide (DMSO) which are typically polar aprotic solvents and hence dissolves both polar and nonpolar compounds. The use of such solvents can be especially problematic in the fabrication of lab-on-a-chip or point-of-care diagnostic platforms as they can attack vulnerable materials such as polymers, passivation layers and microfluidic tubing leading to device damage and fluid leakage. To remedy such challenges, in this work, we demonstrate the use of pyrene-tagged DNA aptamers (PTDA) for performing a one-step aptamer immobilization technique to implement a GFET-based biosensor for the detection of Interleukin-6 (IL-6) protein biomarker. In this approach, the aptamer terminal is pre-tagged with a pyrene group which becomes soluble in aqueous solution. This obviates the need for using organic solvents, thereby enhancing the device integrity. In addition, an external electric field is applied during the functionalization step to increase the efficiency of aptamer immobilization and hence improved coverage and density. The results from this work could potentially open up new avenues for the use of GFET-based BioMEMS platforms by broadening the choice of materials used for device fabrication and integration. 
    more » « less
  4. null (Ed.)
    Lab-on-a-chip technology offers an ideal platform for low-cost, reliable, and easy-to-use diagnostics of key biomarkers needed for early screening of diseases and other health concerns. In this work, a graphene field-effect transistor (GFET) functionalized with target-binding aptamers is used as a biosensor for the detection of thrombin protein biomarker. Furthermore, this GFET is integrated with a microfluidic device for enhanced sensing performances in terms of detection limit, sensitivity, and continuous monitoring. Under this platform, a picomolar limit of detection was achieved for measuring thrombin; in our experiment measured as low as 2.6 pM. FTIR, Raman and UV-Vis spectroscopy measurements were performed to confirm the device functionalization steps. Based on the concentration-dependent calibration curve, a dissociation constant of K D = 375.8 pM was obtained. Continuous real-time measurements were also conducted under a constant gate voltage ( V GS ) to observe the transient response of the sensor when analyte was introduced to the device. The target selectivity of the sensor platform was evaluated and confirmed by challenging the GFET biosensor with various concentrations of lysozyme protein. The results suggest that this device technology has the potential to be used as a general diagnostic platform for measuring clinically relevant biomarkers for point-of-care applications. 
    more » « less
  5. Molecularly imprinted plasmonic nanosensors are robust devices capable of selective target interaction, and in some cases reaction catalysis. Recent advances in control of nanoscale structure have opened the door for development of a wide range of chemosensors for environmental monitoring. The soaring rate of environmental pollution through human activities and its negative impact on the ecosystem demands an urgent interest in developing rapid and efficient techniques that can easily be deployed for in-field assessment and environmental monitoring purposes. Organophosphate pesticides (OPPs) play a significant role for agricultural use; however, they also present environmental threats to human health due to their chemical toxicity. Plasmonic sensors are thus vital analytical detection tools that have been explored for many environmental applications and OPP detection due to their excellent properties such as high sensitivity, selectivity, and rapid recognition capability. Molecularly imprinted polymers (MIPs) have also significantly been recognized as a highly efficient, low-cost, and sensitive synthetic sensing technique that has been adopted for environmental monitoring of a wide array of environmental contaminants, specifically for very small molecule detection. In this review, the general concept of MIPs and their synthesis, a summary of OPPs and environmental pollution, plasmonic sensing with MIPs, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS) MIP sensors, and nanomaterial-based sensors for environmental monitoring applications and OPP detection have been elucidated according to the recent literature. In addition, a conclusion and future perspectives section at the end summarizes the scope of molecularly imprinted plasmonic sensors for environmental applications. 
    more » « less