skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advanced Photothermal Spectroscopy for Trace PFAS Detection
The widespread industrial and consumer use of per- and polyfluoroalkyl substances (PFAS) has led to their persistent presence in the environment, driven by their robust carbon-fluorine bonds and bioaccumulative properties. This contamination poses serious health and ecological risks, making real-time, selective, and sensitive detection of PFAS critical for effective mitigation. We demonstrate a selective and sensitive detection of vapor-phase PFAS using photothermal cantilever deflection spectroscopy (PCDS), achieving a detection limit of ∼30 pg. This method eliminates the need for chemically selective coatings, relying instead on the physisorption of PFAS molecules onto a bi-material microcantilever. By leveraging mid-infrared absorption and monitoring both cantilever bending and resonance frequency, PCDS enables simultaneous chemical identification and mass quantification. The technique demonstrates high selectivity in the mid-infrared fingerprint region and rapid desorption of analytes, offering significant advantages for real-time environmental monitoring and public health protection.  more » « less
Award ID(s):
2226614
PAR ID:
10565757
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
ECS Sensors Plus
Volume:
4
Issue:
1
ISSN:
2754-2726
Format(s):
Medium: X Size: Article No. 013401
Size(s):
Article No. 013401
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Monitoring water quality by detecting chemical and biological contaminants is critical to ensuring the provision and discharge of clean water, hence protecting human health and the ecosystem. Among the available analytical techniques, infrared (IR) spectroscopy provides sensitive and selective detection of multiple water contaminants. In this work, we present an application of IR spectroscopy for qualitative and quantitative assessment of chemical and biological water contaminants. We focus on in-line detection of nitrogen pollutants in the form of nitrate and ammonium for wastewater treatment process control and automation. We discuss the effects of water quality parameters such as salinity, pH, and temperature on the IR spectra of nitrogen pollutants. We then focus on application of the sensor for detection of contaminants of emerging concern, such as arsenic and Per- and polyfluoroalkyl substances (PFAS) in drinking water. We demonstrate the use of multivariate statistical analysis for automated data processing in complex fluids. Finally, we discuss application of IR spectroscopy for detecting biological water contaminants. We use the metabolomic signature of E. coli bacteria to determine its presence in water as well as distinguish between different strains of bacteria. Overall, this work shows that IR spectroscopy is a promising technique for monitoring both chemical and biological contaminants in water and has the potential for real-time, inline water quality monitoring. 
    more » « less
  2. Cationic water-soluble deep cavitands enable hierarchical assembly-based recognition, optical detection and extraction of perfluoroalkyl substances (PFAS) in aqueous solution. Recognition of the PFAS occurs at the lower rim crown of the cavitand, which triggers self-aggregation of a PFAS-cavitand complex, allowing extraction from water. In addition, when paired with an indicator dye that can be bound in the cavity of the host molecule, the PFAS-cavitand association causes a significant (>20-fold at micromolar [PFAS]) enhancement of dye fluorescence due to conformational rearrangement of the fluxional cavitand AMI, allowing optical sensing of PFAS. The cavitands are water-soluble, and the detection and recognition occur in purely aqueous solution. The association is most effective for long chain sulfonate PFAS, and as such, selective optical detection of perfluorooctanesulfonate is possible, with a LOD = 130 nM in buffered water, and 500 nM in real-world samples such as polluted canal water. By pairing the AMI host with multiple dyes in an array-based format, full discrimination of five other PFAS can be achieved at micromolar concentration via differential sensing. In addition, the aggregation process allows extraction of PFAS from solution, and a 99% reduction of PFOS concentration in water is possible with a single treatment of an equimolar concentration of AMI cavitand. The hierarchical nature of the cavitand recognition system allows both selective, sensitive optical detection and extraction of PFAS from water with a single scaffold. 
    more » « less
  3. Standoff detection based on optical spectroscopy is an attractive method for identifying materials at a distance with very high molecular selectivity. Standoff spectroscopy can be exploited in demanding practical applications such as sorting plastics for recycling. Here, we demonstrate selective and sensitive standoff detection of polymer films using bi-material cantilever-based photothermal spectroscopy. We demonstrate that the selectivity of the technique is sufficient to discriminate various polymers. We also demonstrate in situ, point detection of thin layers of polymers deposited on bi-material cantilevers using photothermal spectroscopy. Comparison of the standoff spectra with those obtained by point detection, FTIR, and FTIR-ATR show relative broadening of peaks. Exposure of polymers to UV radiation (365 nm) reveal that the spectral peaks do not change with exposure time, but results in peak broadening with an overall increase in the background cantilever response. The sensitivity of the technique can be further improved by optimizing the thermal sensitivity of the bi-material cantilever and by increasing the number of photons impinging on the cantilever. 
    more » « less
  4. Abstract The presence of poly‐ and perfluoroalkyl substances (PFAS) in the environment is associated with adverse health effects but measuring PFAS is challenging due to the associated high cost and technical complexities of the analysis. Here, the reactivity of atomically precise metal‐oxo clusters is reported and the foundation for their use is provided as fluorescent nanosensors for PFAS detection. The material comprises crystalline, water soluble, hexanuclear cerium‐oxo clusters [Ce63‐O)43‐OH)4]12+decorated with glycine molecules (Ce‐Gly) characterized by fluorescence emission at 353 nm. The Ce‐Gly fluorescence is found sensitive to long chain carboxylated PFAS of CF3–(CF2)n–, where n ≥ 6, such as perfluorooctanoic, perfluorononanoic and perfluorodecanoic acids. This unique reactivity leads to a change in the emission spectra in a concentration dependent manner, enabling PFAS detection through ligand exchange and aggregation‐induced emission (AIE) enhancement. No significant cross‐reactivity from potentially co‐existing species, including sulfonated PFAS, octanoic and dodecanoic acids, humic acid, and inorganic ions is observed. With an optimal concentration of 3.3 µg mL−1Ce‐Gly, the method demonstrated detection limits of 0.24 ppb for PFOA and 0.4 ppb for PFNA. These findings highlight the potential of fluorescence‐based detection strategies utilizing nanoscale probes such as Ce‐Gly as fluorescent probes and nanosensors for PFAS. 
    more » « less
  5. Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution. 
    more » « less