skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-consistent Ring Model in Protoplanetary Disks: Temperature Dips and Substructure Formation
Abstract Rings and gaps are ubiquitous in protoplanetary disks. Larger dust grains will concentrate in gaseous rings more compactly due to stronger aerodynamic drag. However, the effects of dust concentration on the ring’s thermal structure have not been explored. Using MCRT simulations, we self-consistently construct ring models by iterating the ring’s thermal structure, hydrostatic equilibrium, and dust concentration. We set up rings with two dust populations having different settling and radial concentration due to their different sizes. We find two mechanisms that can lead to temperature dips around the ring. When the disk is optically thick, the temperature drops outside the ring, which is the shadowing effect found in previous studies adopting a single-dust population in the disk. When the disk is optically thin, a second mechanism due to excess cooling of big grains is found. Big grains cool more efficiently, which leads to a moderate temperature dip within the ring where big dust resides. This dip is close to the center of the ring. Such a temperature dip within the ring can lead to particle pileup outside the ring and feedback to the dust distribution and thermal structure. We couple the MCRT calculations with a 1D dust evolution model and show that the ring evolves to a different shape and may even separate to several rings. Overall, dust concentration within rings has moderate effects on the disk’s thermal structure, and a self-consistent model is crucial not only for protoplanetary disk observations but also for planetesimal and planet formation studies.  more » « less
Award ID(s):
1753168 1716259
PAR ID:
10337782
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
70
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Protoplanetary disks can exhibit asymmetric temperature variations due to phenomena such as shadows cast by the inner disk or localized heating by young planets. We investigate the disk features induced by these asymmetric temperature variations. We find that spirals are initially excited, and then break into two and reconnect to form rings. By carrying out linear analyses, we first study the spiral launching mechanism and find that the effects of azimuthal temperature variations share similarities with effects of external potentials. Specifically, rotating temperature variations launch steady spiral structures at Lindblad resonances, which corotate with the temperature patterns. When the cooling time exceeds the orbital period, these spiral structures are significantly weakened, and a checkerboard pattern may appear. A temperature variation of about 10% can induce spirals with order unity density perturbations, comparable to those generated by a thermal mass planet. We then study ring formation and find it is related to the coupling between azimuthal temperature variations and spirals outside the resonances. Such coupling leads to a radially varying angular momentum flux, which produces anomalous wave-driven accretion and forms dense rings separated by the wavelength of the waves. Finally, we speculate that spirals induced by temperature variations may contribute to disk accretion through nonlinear wave steepening and dissipation. Overall, considering that irradiation determines the temperature structure of protoplanetary disks, the change of irradiation both spatially or/and temporarily may produce observable effects in protoplanetary disks, especially spirals and rings in outer disks beyond tens of au. 
    more » « less
  2. Knowledge of the midplane temperature of protoplanetary disks is one of the key ingredients in theories of dust growth and planet formation. However, direct measurement of this quantity is complicated, and often depends on the fitting of complex models to data. In this paper we demonstrate a method to directly measure the midplane gas temperature from an optically thick molecular line if the disk is moderately inclined. The only model assumption that enters is that the line is very optically thick, specifically in the midplane region where we wish to measure the temperature. Freeze-out of the molecule onto dust grains could thwart this. However, in regions that are expected to be warm enough to avoid freeze-out, this method should work. We apply the method to the CO 2–1 line channel maps of the disk around HD 163296. We find that the midplane temperature between 100 and 400 au drops only mildly from 25 K down to 18 K. While we see no direct evidence of the midplane being optically thin due to strong CO depletion by freeze-out, we cannot rule it out either. The fact that the inferred temperatures are close to the expected CO freeze-out temperature could be an indication of this. Incidently, for the disk around HD 163296 we also find dynamic evidence for a rather abrupt outer edge of the disk, suggestive of outside-in photoevaporation or truncation by an unseen companion. 
    more » « less
  3. Abstract Radio images of protoplanetary disks demonstrate that dust grains tend to organize themselves into rings. These rings may be a consequence of dust trapping within gas pressure maxima, wherein the local high dust-to-gas ratio is expected to trigger the formation of planetesimals and eventually planets. We revisit the behavior of dust near gas pressure perturbations enforced by a planet in two-dimensional, shearing-box simulations. While dust grains collect into generally long-lived rings, particles with a small Stokes parameter τ s < 0.1 tend to advect out of the ring within a few drift timescales. Scaled to the properties of ALMA disks, we find that rings composed of larger particles ( τ s ≥ 0.1) can nucleate a dust clump massive enough to trigger pebble accretion, which proceeds to ingest the entire dust ring well within ∼1 Myr. To ensure the survival of the dust rings, we favor a nonplanetary origin and typical grain size τ s ≲ 0.05–0.1. Planet-driven rings may still be possible but if so we would expect the orbital distance of the dust rings to be larger for older systems. 
    more » « less
  4. Abstract VLA 1623 West is an ambiguous source that has been described as a shocked cloudlet as well as a protostellar disk. We use deep ALMA 1.3 and 0.87 mm observations to constrain its shape and structure to determine its origins better. We use a series of geometric models to fit the uv visibilities at both wavelengths with GALARIO . Although the real visibilities show structures similar to what has been identified as gaps and rings in protoplanetary disks, we find that a modified flat-topped Gaussian model at high inclination provides the best fit to the observations. This fit agrees well with expectations for an optically thick, highly inclined disk. Nevertheless, we find that the geometric models consistently yield positive residuals at the four corners of the disk at both wavelengths. We interpret these residuals as evidence that the disk is flared in the millimeter dust. We use a simple toy model for an edge-on flared disk and find that the residuals best match a disk with flaring that is mainly restricted to the outer disk at R ≳ 30 au. Thus, VLA 1623W may represent a young protostellar disk where the large dust grains have not yet had enough time to settle into the midplane. This result may have implications for how disk evolution and vertical dust settling impact the initial conditions leading to planet formation. 
    more » « less
  5. We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60 × 40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7 μ Jy beam −1 rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few M Jup ), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N 2 snowlines. 
    more » « less