skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermodynamic non-ideality in charge regulation of weak polyelectrolytes
Polymer ionization differs from that for their monomeric counterparts due to intramolecular correlations. Such effects are conventionally described in terms of the site-binding model that accounts for short-range interactions between neighboring sites. With an apparent equilibrium constant for each ionizable group and the nearest-neighbor energy as adjustable parameters, the site-binding method is useful to correlate experimental titration curves when the site–site interactions are insignificant at long ranges. This work aims to describe the electrostatic behavior of weak polyelectrolytes in aqueous solutions on the basis of the intrinsic equilibrium constants of the individual ionizable groups and solution conditions underlying the thermodynamic non-ideality. A molecular thermodynamic model is proposed for the protonation of weak polyelectrolytes by incorporating classical density functional theory into the site-binding model to account for the effects of the local ionic environment on both inter-chain and intra-chain correlations. By an extensive comparison of theoretical predictions with experimental titration curves, we demonstrate that the thermodynamic model is able to quantify the ionization behavior of weak polyelectrolytes over a broad range of molecular architectures and solution conditions.  more » « less
Award ID(s):
1940118
PAR ID:
10337802
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
40
ISSN:
1744-683X
Page Range / eLocation ID:
9221 to 9234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conventional theories of weak polyelectrolytes are either computationally prohibitive to account for the multidimensional inhomogeneity of polymer ionization in a liquid environment or oversimplistic in describing the coupling effects of ion-explicit electrostatic interactions and long-range intrachain correlations. To bridge this gap, we implement the Ising density functional theory (iDFT) for ionizable polymer systems using the single-chain-in-mean-field algorithm. The single-chain-in-iDFT (sc-iDFT) shows significant improvements over conventional mean-field methods in describing segment-level dissociation equilibrium, specific ion effects, and long-range intrachain correlations. With an explicit consideration of the fluctuations of polymer configurations and the position-dependent ionization of individual polymer segments, sc-iDFT provides a faithful description of the structure and thermodynamic properties of inhomogeneous weak polyelectrolyte systems across multiple length scales. 
    more » « less
  2. Keskin, Ozlem (Ed.)
    Multistep protein-protein interactions underlie most biological processes, but their characterization through methods such as isothermal titration calorimetry (ITC) is largely confined to simple models that provide little information on the intermediate, individual steps. In this study, we primarily examine the essential hub protein LC8, a small dimer that binds disordered regions of 100+ client proteins in two symmetrical grooves at the dimer interface. Mechanistic details of LC8 binding have remained elusive, hampered in part by ITC data analyses employing simple models that treat bivalent binding as a single event with a single binding affinity. We build on existing Bayesian ITC approaches to quantify thermodynamic parameters for multi-site binding interactions impacted by significant uncertainty in protein concentration. Using a two-site binding model, we identify positive cooperativity with high confidence for LC8 binding to multiple client peptides. In contrast, application of an identical model to the two-site binding between the coiled-coil NudE dimer and the intermediate chain of dynein reveals little evidence of cooperativity. We propose that cooperativity in the LC8 system drives the formation of saturated induced-dimer structures, the functional units of most LC8 complexes. In addition to these system-specific findings, our work advances general ITC analysis in two ways. First, we describe a previously unrecognized mathematical ambiguity in concentrations in standard binding models and clarify how it impacts the precision with which binding parameters are determinable in cases of high uncertainty in analyte concentrations. Second, building on observations in the LC8 system, we develop a system-agnostic heat map of practical parameter identifiability calculated from synthetic data which demonstrates that the ability to determine microscopic binding parameters is strongly dependent on both the parameters themselves and experimental conditions. The work serves as a foundation for determination of multi-step binding interactions, and we outline best practices for Bayesian analysis of ITC experiments. 
    more » « less
  3. The phase behavior and chain conformational structure of biphasic polyzwitterion–polyelectrolyte coacervates in salted aqueous solution are investigated with a model weak cationic polyelectrolyte, poly(2-vinylpyridine) (P2VP), whose charge fraction can be effectively tuned by pH. It is observed that increasing the pH leads to the increase of the yielding volume fraction and the water content of dense coacervates formed between net neutral polybetaine and cationic P2VP in contrast to the decrease of critical salt concentration for the onset of coacervation, where the P2VP charge fraction is reduced correspondingly. Surprisingly, a single-molecule fluorescence spectroscopic study suggests that P2VP chains upon coacervation seem to adopt a swollen or an even more expanded conformational structure at higher pH. As the hydrophobicity of P2VP chains is accompanied by a reduced charge fraction by increasing the pH, a strong pH-dependent phase and conformational behaviors suggest the shift of entropic and enthalpic contribution to the underlying thermodynamic energy landscape and chain structural dynamics of polyelectrolyte coacervation involving weak polyelectrolytes in aqueous solution. 
    more » « less
  4. Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes. 
    more » « less
  5. A series of poly( N -acryloyl glycinamide) (pNAGA) polymers were synthesized and studied as capture agents for surface-enhanced Raman scattering (SERS) detection of aflatoxin B1 (AFB1), a highly carcinogenic food-borne toxin. Four molecular weights of pNAGA were synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization to study the dependence of affinity agent efficacy on chain length for this AFB1 sensing platform. Isothermal titration calorimetry (ITC) was used to verify the sign and magnitude of the enthalpic effects involved in polymer–AFB1 interactions in solution and to understand the effects of pNAGA chain length on AFB1 noncovalent binding. pNAGA–AFB1 interactions were found to be exothermic, and longer pNAGA chains generally resulted in smaller enthalpy decreases per repeat unit. With pNAGA 22 being thermodynamically the strongest affinity agent, we hypothesize that AFB1 affinity is determined by a balance between the configurational restrictions in pNAGA chains and the enthalpic advantage of binding AFB1. SERS spectral changes observed following AFB1 exposure were used to evaluate the influence of polymer molecular weight (2.0–5.2 kDa), order of attachment (pre- vs. post- functionalization of the substrate) and attachment chemistry (thiol vs. trithiocarbonate) on the sensitivity of AFB1 detection. The method by which target, polymer affinity agent, and signal transduction mechanism are combined was found to have significant impacts on the achieved sensitivity. The most effective polymer chain length (pNAGA 22 ), anchoring chemistry (thiol), and polymer/toxin assembly scheme (in-solution) allowed detection of 10 ppb AFB1 in water (below the FDA regulatory limit of 20 ppb), a hundred-fold improvement over SERS sensing without the pNAGA affinity agent. 
    more » « less