ABSTRACT We present the measurement of the Hubble constant, H0, with three strong gravitational lens systems. We describe a blind analysis of both PG 1115+080 and HE 0435−1223 as well as an extension of our previous analysis of RXJ 1131−1231. For each lens, we combine new adaptive optics (AO) imaging from the Keck Telescope, obtained as part of the SHARP (Stronglensing High Angular Resolution Programme) AO effort, with Hubble Space Telescope (HST) imaging, velocity dispersion measurements, and a description of the lineofsight mass distribution to build an accurate and precise lens mass model. This mass model is then combined with the COSMOGRAILmeasured time delays in these systems to determine H0. We do both an AOonly and an AO + HST analysis of the systems and find that AO and HST results are consistent. After unblinding, the AOonly analysis gives $H_{0}=82.8^{+9.4}_{8.3}~\rm km\, s^{1}\, Mpc^{1}$ for PG 1115+080, $H_{0}=70.1^{+5.3}_{4.5}~\rm km\, s^{1}\, Mpc^{1}$ for HE 0435−1223, and $H_{0}=77.0^{+4.0}_{4.6}~\rm km\, s^{1}\, Mpc^{1}$ for RXJ 1131−1231. The joint AOonly result for the three lenses is $H_{0}=75.6^{+3.2}_{3.3}~\rm km\, s^{1}\, Mpc^{1}$. The joint result of the AO + HST analysis for the three lenses is $H_{0}=76.8^{+2.6}_{2.6}~\rm km\, s^{1}\, Mpc^{1}$. All of these results assume a flat Λ cold dark matter cosmology with a uniform priormore »
This content will become publicly available on May 5, 2023
SHARP – VIII. J0924+0219 lens mass distribution and timedelay prediction through adaptiveoptics imaging
ABSTRACT Strongly lensed quasars can provide measurements of the Hubble constant (H0) independent of any other methods. One of the key ingredients is exquisite highresolution imaging data, such as Hubble Space Telescope (HST) imaging and adaptiveoptics (AO) imaging from groundbased telescopes, which provide strong constraints on the mass distribution of the lensing galaxy. In this work, we expand on the previous analysis of three timedelay lenses with AO imaging (RX J1131−1231, HE 0435−1223, and PG 1115+080), and perform a joint analysis of J0924+0219 by using AO imaging from the Keck telescope, obtained as part of the Strong lensing at High Angular Resolution Program (SHARP) AO effort, with HST imaging to constrain the mass distribution of the lensing galaxy. Under the assumption of a flat Λ cold dark matter (ΛCDM) model with fixed Ωm = 0.3, we show that by marginalizing over two different kinds of mass models (powerlaw and composite models) and their transformed mass profiles via a masssheet transformation, we obtain $\Delta t_{\rm BA}=6.89\substack{+0.8\\0.7}\, h^{1}\hat{\sigma }_{v}^{2}$ d, $\Delta t_{\rm CA}=10.7\substack{+1.6\\1.2}\, h^{1}\hat{\sigma }_{v}^{2}$ d, and $\Delta t_{\rm DA}=7.70\substack{+1.0\\0.9}\, h^{1}\hat{\sigma }_{v}^{2}$ d, where $h=H_{0}/100\,\rm km\, s^{1}\, Mpc^{1}$ is the dimensionless Hubble constant and $\hat{\sigma }_{v}=\sigma ^{\rm ob}_{v}/(280\,\rm km\, s^{1})$ is the scaled dimensionless velocity dispersion. Future measurements of time more »
 Publication Date:
 NSFPAR ID:
 10337832
 Journal Name:
 Monthly Notices of the Royal Astronomical Society
 Volume:
 513
 Issue:
 2
 Page Range or eLocationID:
 2349 to 2359
 ISSN:
 00358711
 Sponsoring Org:
 National Science Foundation
More Like this


Abstract We present the lens mass model of the quadruplyimaged gravitationally lensed quasar WFI2033−4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) timedelay measurements from 14 years of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) highresolution Hubble Space Telescope imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESOMUSE data, and (4) multiband, widefield imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex lineofsight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective timedelay distance to be $4784_{248}^{+399}~\mathrm{Mpc}$, an average precision of $6.6{{\ \rm per\ cent}}$. This translates to a Hubble constant $H_{0} = 71.6_{4.9}^{+3.8}~\mathrm{km~s^{1}~Mpc^{1}}$, assuming a flat ΛCDM cosmology with a uniform prior on Ωm in the range [0.05, 0.5]. This work is part of the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration, and the full timedelay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII).

ABSTRACT We present a catalogue of 22 755 objects with slitless, optical, Hubble Space Telescope (HST) spectroscopy from the Grism LensAmplified Survey from Space (GLASS). The data cover ∼220 sq. arcmin to 7orbit (∼10 ks) depth in 20 parallel pointings of the Advanced Camera for Survey’s G800L grism. The fields are located 6 arcmin away from 10 massive galaxy clusters in the HFF and CLASH footprints. 13 of the fields have ancillary HST imaging from these or other programs to facilitate a large number of applications, from studying metal distributions at z ∼ 0.5, to quasars at z ∼ 4, to the star formation histories of hundreds of galaxies in between. The spectroscopic catalogue has a median redshift of 〈z〉 = 0.60 with a median uncertainty of $\Delta z / (1+z)\lesssim 2{{\ \rm per\ cent}}$ at $F814\mathit{ W}\lesssim 23$ AB. Robust continuum detections reach a magnitude fainter. The 5 σ limiting line flux is $f_{\rm lim}\approx 5\times 10^{17}\rm ~erg~s^{1}~cm^{2}$ and half of all sources have 50 per cent of pixels contaminated at ≲1 per cent. All sources have 1D and 2D spectra, line fluxes/uncertainties and identifications, redshift probability distributions, spectral models, and derived narrowband emissionline maps from the Grism Redshift and Line Analysis tool (grizli). We provide other basic sample characterizations,more »

ABSTRACT We present a blind timedelay cosmographic analysis for the lens system DES J0408−5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine the measured time delays, lineofsight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure the ‘effective’ timedelay distance corresponding to the redshifts of the deflector and the lensed quasar $D_{\Delta t}^{\rm eff}=$$3382_{115}^{+146}$ Mpc and the angular diameter distance to the deflector Dd = $1711_{280}^{+376}$ Mpc, with covariance between the two distances. From these constraints on the cosmological distances, we infer the Hubble constant H0= $74.2_{3.0}^{+2.7}$ km s−1 Mpc−1 assuming a flat ΛCDM cosmology and a uniform prior for Ωm as $\Omega _{\rm m} \sim \mathcal {U}(0.05, 0.5)$. This measurement gives the most precise constraint on H0 to date from a single lens. Our measurement is consistent with that obtained from the previous sample of six lenses analysed by the H0more »

ABSTRACT Galaxies and galaxy groups located along the line of sight towards gravitationally lensed quasars produce highorder perturbations of the gravitational potential at the lens position. When these perturbation are too large, they can induce a systematic error on H0 of a few per cent if the lens system is used for cosmological inference and the perturbers are not explicitly accounted for in the lens model. In this work, we present a detailed characterization of the environment of the lens system WFI 2033−4723 ($z_{\rm src} =\,$1.662, $z_{\rm lens}=\,$0.6575), one of the core targets of the H0LiCOW project for which we present cosmological inferences in a companion paper. We use the Gemini and ESOVery Large telescopes to measure the spectroscopic redshifts of the brightest galaxies towards the lens, and use the ESOMUSE integral field spectrograph to measure the velocitydispersion of the lens ($\sigma _{\rm {los}}= 250^{+15}_{21}$ km s−1) and of several nearby galaxies. In addition, we measure photometric redshifts and stellar masses of all galaxies down to i < 23 mag, mainly based on Dark Energy Survey imaging (DR1). Our new catalogue, complemented with literature data, more than doubles the number of known galaxy spectroscopic redshifts in the direct vicinity of the lens, expanding to 116more »