skip to main content


Search for: All records

Award ID contains: 1836016

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Strongly lensed quasars can provide measurements of the Hubble constant (H0) independent of any other methods. One of the key ingredients is exquisite high-resolution imaging data, such as Hubble Space Telescope (HST) imaging and adaptive-optics (AO) imaging from ground-based telescopes, which provide strong constraints on the mass distribution of the lensing galaxy. In this work, we expand on the previous analysis of three time-delay lenses with AO imaging (RX J1131−1231, HE 0435−1223, and PG 1115+080), and perform a joint analysis of J0924+0219 by using AO imaging from the Keck telescope, obtained as part of the Strong lensing at High Angular Resolution Program (SHARP) AO effort, with HST imaging to constrain the mass distribution of the lensing galaxy. Under the assumption of a flat Λ cold dark matter (ΛCDM) model with fixed Ωm = 0.3, we show that by marginalizing over two different kinds of mass models (power-law and composite models) and their transformed mass profiles via a mass-sheet transformation, we obtain $\Delta t_{\rm BA}=6.89\substack{+0.8\\-0.7}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, $\Delta t_{\rm CA}=10.7\substack{+1.6\\-1.2}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, and $\Delta t_{\rm DA}=7.70\substack{+1.0\\-0.9}\, h^{-1}\hat{\sigma }_{v}^{2}$ d, where $h=H_{0}/100\,\rm km\, s^{-1}\, Mpc^{-1}$ is the dimensionless Hubble constant and $\hat{\sigma }_{v}=\sigma ^{\rm ob}_{v}/(280\,\rm km\, s^{-1})$ is the scaled dimensionless velocity dispersion. Future measurements of time delays with 10 per cent uncertainty and velocity dispersion with 5 per cent uncertainty would yield a H0 constraint of ∼15 per cent precision.

     
    more » « less
  2. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    The W. M. Keck Observatory Adaptive Optics (AO) facilities have been operating with a Field Programmable Gate Array (FPGA) based real time controller (RTC) since 2007. The RTC inputs data from various AO wavefront and tip/tilt sensors; and corrects image blurring from atmospheric turbulence via deformable and tip/tilt mirrors. Since its commissioning, the Keck I and Keck II RTCs have been upgraded to support new hardware such as pyramid wavefront and infrared tip-tilt sensors. However, they are reaching the limits of their capabilities in terms of processing bandwidth and the ability to interface with new hardware. Together with the Keck All-sky Precision Adaptive optics (KAPA) project, a higher performance and a more reliable RTC is needed to support next generation capabilities such as laser tomography and sensor fusion. This paper provides an overview of the new RTC system, developed with our contractor/collaborators (Microgate, Swinburne University of Technology and Australian National University), and the initial on-sky performance. The upgrade includes an Interface Module to interface with the wavefront sensors and controlled hardware, and a Graphical Processing Unit (GPU) based computational engine to meet the system’s control requirements and to provide a flexible software architecture to allow future algorithms development and capabilities. The system saw first light in 2021 and is being commissioned in 2022 to support single conjugate laser guide star (LGS) AO, along with a more sensitive EMCCD camera. Initial results are provided to demonstrate single NGS & LGS performance, system reliability, and the planned upgrade for four LGS to support laser tomography. 
    more » « less
  3. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    We present the status and plans for the Keck All sky Precision Adaptive optics (KAPA) program. KAPA includes (1) an upgrade to the Keck I laser guide star adaptive optics (AO) facility to improve image quality and sky coverage, (2) the inclusion of AO telemetry-based point spread function estimates with all science exposures, (3) four key science programs, and (4) an educational component focused on broadening the participation of women and underrepresented groups in instrumentation. For this conference we focus on the KAPA upgrades since the 2020 SPIE proceedings1 including implementation of a laser asterism generator, wavefront sensor, real-time controller, asterism and turbulence simulators, the laser tomography system itself along with new operations software and science tools, and modifications to an existing near-infrared tip-tilt sensor to support multiple natural guide star and focus measurements. We will also report on the results of daytime and on-sky calibrations and testing. 
    more » « less
  4. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    As part of the Keck All-sky Precision Adaptive optics (KAPA) project a laser Asterism Generator (AG) is being implemented on the Keck I telescope. The AG provides four Laser Guide Stars (LGS) to the Keck Adaptive Optics (AO) system by splitting a single 22W laser beam into four beams of equal intensity. We present the design and implementation of the AG for KAPA. We discuss the optical design and layout, the details of the mechanical design and fabrication, and the challenges of designing the assembly to fit into the limited available space on the Keck telescope. 
    more » « less
  5. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    The Keck All-Sky Precision Adaptive Optics (KAPA) system project will upgrade the Keck I AO system to enable laser tomography with a four laser guide star (LGS) asterism. This paper describes the new infrastructure which is being built for daytime calibration and testing of the KAPA tomographic algorithms. 
    more » « less
  6. ABSTRACT Astrometric precision and knowledge of the point spread function are key ingredients for a wide range of astrophysical studies including time-delay cosmography in which strongly lensed quasar systems are used to determine the Hubble constant and other cosmological parameters. Astrometric uncertainty on the positions of the multiply-imaged point sources contributes to the overall uncertainty in inferred distances and therefore the Hubble constant. Similarly, knowledge of the wings of the point spread function is necessary to disentangle light from the background sources and the foreground deflector. We analyse adaptive optics (AO) images of the strong lens system J 0659+1629 obtained with the W. M. Keck Observatory using the laser guide star AO system. We show that by using a reconstructed point spread function we can (i) obtain astrometric precision of <1 mas, which is more than sufficient for time-delay cosmography; and (ii) subtract all point-like images resulting in residuals consistent with the noise level. The method we have developed is not limited to strong lensing, and is generally applicable to a wide range of scientific cases that have multiple point sources nearby. 
    more » « less
  7. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    We present the status and plans for the Keck All sky Precision Adaptive optics (KAPA) program. KAPA includes four key science programs, an upgrade to the Keck I laser guide star (LGS) adaptive optics (AO) facility to improve image quality and sky coverage, AO telemetry based point spread function (PSF) estimates for all science exposures, and an educational component focused on broadening the participation of women and underrepresented groups in instrumentation. For the purpose of this conference we will focus on the AO facility upgrade which includes implementation of a new laser, wavefront sensor and real-time controller to support laser tomography, the laser tomography system itself, and modifications to an existing near-infrared tip-tilt sensor to support multiple natural guide star (NGS) and focus measurements. 
    more » « less