skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extracting and Visualizing Wildlife Trafficking Events from Wildlife Trafficking Reports
Abstract—Experts combating wildlife trafficking manually sift through articles about seizures and arrests, which is time consuming and make identifying trends difficult. We apply natural language processing techniques to automatically extract data from reports published by the Eco Activists for Governance and Law Enforcement (EAGLE). We expanded Python spaCy’s pre-trained pipeline and added a custom named entity ruler, which identified 15 fully correct and 36 partially correct events in 15 reports against an existing baseline, which did not identify any fully correct events. The extracted wildlife trafficking events were inserted to a database. Then, we created visualizations to display trends over time and across regions to support domain experts. These are accessible on our website, Wildlife Trafficking in Africa.  more » « less
Award ID(s):
2120065
PAR ID:
10337837
Author(s) / Creator(s):
Date Published:
Journal Name:
ACM/IEEE Advances in Social Network Analysis and Mining
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wildlife trafficking is a global phenomenon posing many negative impacts on socio-environmental systems. Scientific exploration of wildlife trafficking trends and the impact of interventions is signifi-cantly encumbered by a suite of data reuse challenges. We describe a novel, open-access data directory on wildlife trafficking and a corresponding visualization tool that can be used to identify data for multiple purposes, such as exploring wildlife trafficking hotspots and convergence points with other crime, discovering key drivers or deterrents of wildlife trafficking, and uncovering structural patterns. Keyword searches, expert elicitation, and peer- reviewed publications were used to search for extant sources used by industry and non-profit organizations, as well as those leveraged to publish academic research articles. The open-access data direc-tory is designed to be a living document and searchable according to multiple measures. The directory can be instrumental in the data- driven analysis of unsustainable illegal wildlife trade, supply chain structure via link prediction models, the value of demand and supply reduction initiatives via multi-item knapsack problems, or trafficking behavior and transportation choices via network inter-diction problems. 
    more » « less
  2. Cire, A.A. (Ed.)
    Wildlife trafficking (WT), the illegal trade of wild fauna, flora, and their parts, directly threatens biodiversity and conservation of trafficked species, while also negatively impacting human health, national security, and economic development. Wildlife traffickers obfuscate their activities in plain sight, leveraging legal, large, and globally linked transportation networks. To complicate matters, defensive interdiction resources are limited, datasets are fragmented and rarely interoperable, and interventions like setting checkpoints place a burden on legal transportation. As a result, interpretable predictions of which routes wildlife traffickers are likely to take can help target defensive efforts and understand what wildlife traffickers may be considering when selecting routes. We propose a data-driven model for predicting trafficking routes on the global commercial flight network, a transportation network for which we have some historical seizure data and a specification of the possible routes that traffickers may take. While seizure data has limitations such as data bias and dependence on the deployed defensive resources, this is a first step towards predicting wildlife trafficking routes on real-world data. Our seizure data documents the planned commercial flight itinerary of trafficked and successfully interdicted wildlife. We aim to provide predictions of highly-trafficked flight paths for known origin-destination pairs with plausible explanations that illuminate how traffickers make decisions based on the presence of criminal actors, markets, and resilience systems. We propose a model that first predicts likelihoods of which commercial flights will be taken out of a given airport given input features, and then subsequently finds the highest-likelihood flight path from origin to destination using a differentiable shortest path solver, allowing us to automatically align our model’s loss with the overall goal of correctly predicting the full flight itinerary from a given source to a destination. We evaluate the proposed model’s predictions and interpretations both quantitatively and qualitatively, showing that the predicted paths are aligned with observed held-out seizures, and can be interpreted by policy-makers 
    more » « less
  3. Agrawal, A. (Ed.)
    Wildlife trafficking, whether local or transnational in scope, undermines sustainable development efforts, degrades cultural resources, endangers species, erodes the local and global economy, and facilitates the spread of zoonotic diseases. Wildlife trafficking networks (WTNs) occupy a unique gray space in supply chains—straddling licit and illicit networks, supporting legitimate and criminal workforces, and often demonstrating high resilience in their sourcing flexibility and adaptability. Authorities in different sectors desire, but frequently lack knowledge about how to allocate resources to disrupt illicit wildlife supply networks and prevent negative collateral impacts. Novel conceptualizations and a deeper scientific understanding of WTN structures are needed to help unravel the dynamics of interaction between disruption and resilience while accommodating socioenvironmental context. We use the case of ploughshare tortoise trafficking to help illustrate the potential of key advancements in interdisciplinary thinking. Insights herein suggest a significant need and opportunity for scientists to generate new science-based recommendations for WTN-related data collection and analysis for supply chain visibility, shifts in illicit supply chain dominance, network resilience, or limits of the supplier base. 
    more » « less
  4. Illicit Wildlife Trade (IWT) is a serious global crime that negatively impacts biodiversity, human health, national security, and economic development. Many flora and fauna are trafficked in different product forms. We investigate a network interdiction problem for wildlife trafficking and introduce a new model to tackle key challenges associated with IWT. Our model captures the interdiction problem faced by law enforcement impeding IWT on flight networks, though it can be extended to other types of transportation networks. We incorporate vital issues unique to IWT, including the need for training and difficulty recognizing illicit wildlife products, the impact of charismatic species and geopolitical differences, and the varying amounts of information and objectives traffickers may use when choosing transit routes. Additionally, we incorporate different detection probabilities at nodes and along arcs depending on law enforcement’s interdiction and training actions. We present solutions for several key IWT supply chains using realistic data from conservation research, seizure databases, and international reports. We compare our model to two benchmark models and highlight key features of the interdiction strategy. We discuss the implications of our models for combating IWT in practice and highlight critical areas of concern for stakeholders. 
    more » « less
  5. We describe a novel database on wildlife trafficking that can be used for exploring supply chain coordination via game-theoretic collaboration models, geographic spread of wildlife products trafficked via multi-item knapsack problems, or illicit network interdiction via multi-armed bandit problems.</p> A publicly available visualization of this dataset is available at: https://public.tableau.com/views/IWTDataDirectory-Gore/Sheet2?:language=en-US&:display_count=n&:origin=viz_share_link 
    more » « less