We present predictions for the high-redshift halo–galaxy–supermassive black hole (SMBH) connection from the Trinity model. Matching a comprehensive compilation of galaxy (0 ≤ z ≤ 13) and SMBH data sets (0 ≤ z ≤ 6.5), Trinity finds: (1) The number of SMBHs with M• > 109 M⊙ in the observable Universe increases by five orders of magnitude from z ∼ 10 to z ∼ 2, and by another factor of ∼3 from z ∼ 2 to z = 0; (2) The M• > 109 and 1010 M⊙ SMBHs at z ∼ 6 live in haloes with ∼(2 − 3) and (3 − 5) × 1012 M⊙; (3) the newly discovered JWST AGN candidates at 7 ≲ z ≲ 11 are overmassive compared to the intrinsic SMBH mass–galaxy mass relation from Trinity, but they are still broadly consistent with Trinity predictions for flux limited AGN samples with Lauer bias. This bias favours the detection for overmassive SMBHs due to higher luminosities at a fixed Eddington ratio. However UHZ1’s M•/M* ratio is still some 1 dex higher than Trinity AGNs, indicating a discrepancy; (4) Trinity underpredicts the number densities of GN-z11 and CEERS_1019 analogues. But given the strong constraints from existing data in Trinity, the extra constraint from GN-z11 and CEERS_1019 does not significantly change trinity model results. (5) z = 6–10 quasar luminosity functions will reduce uncertainties in the trinity prediction of the z = 6–10 SMBH mass–galaxy mass relation by up to ∼0.5 dex. These luminosity functions will be available with future telescopes, such as Roman and Euclid.
- Award ID(s):
- 2006176
- PAR ID:
- 10337901
- Date Published:
- Journal Name:
- The astrophysical journal
- ISSN:
- 2041-8213
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume
Romulus25 , with stellar masses between log(M */M ⊙) = 9.5–11.5. We measure the fraction of metals remaining in the interstellar medium (ISM) and CGM of each galaxy and calculate the expected mass of each SMBH based on theM BH–σ relation (Kormendy & Ho 2013). The deviation of each SMBH from its expected mass, ΔM BH, is compared to the potential of its host viaσ . We find that SMBHs with accreted mass aboveM BH–σ are more effective at removing metals from the ISM than undermassive SMBHs in star-forming galaxies. Overall, overmassive SMBHs suppress the total star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little to no evacuation of gas from the CGM out of their halos, in contrast with other simulations. Finally, we predict that Civ column densities in the CGM of L*galaxies are unlikely to depend on host galaxy SMBH mass. Our results show that the scatter in the low-mass end of theM BH–σ relation may indicate how effective an SMBH is in the local redistribution of mass in its host galaxy. -
null (Ed.)The existence of ∼10 9 M ⊙ supermassive black holes (SMBHs) within the first billion years of the Universe has stimulated numerous ideas for the prompt formation and rapid growth of black holes (BHs) in the early Universe. Here, we review ways in which the seeds of massive BHs may have first assembled, how they may have subsequently grown as massive as ∼10 9 M ⊙ , and how multimessenger observations could distinguish between different SMBH assembly scenarios. We conclude the following: ▪ The ultrarare ∼10 9 M ⊙ SMBHs represent only the tip of the iceberg. Early BHs likely fill a continuum from the stellar-mass (∼10M ⊙ ) to the supermassive (∼10 9 ) regimes, reflecting a range of initial masses and growth histories. ▪ Stellar-mass BHs were likely left behind by the first generation of stars at redshifts as high as ∼30, but their initial growth typically was stunted due to the shallow potential wells of their host galaxies. ▪ Conditions in some larger, metal-poor galaxies soon became conducive to the rapid formation and growth of massive seed holes, via gas accretion and by mergers in dense stellar clusters. ▪ BH masses depend on the environment (such as the number and properties of nearby radiation sources and the local baryonic streaming velocity) and on the metal enrichment and assembly history of the host galaxy. ▪ Distinguishing between assembly mechanisms will be difficult, but a combination of observations by the Laser Interferometer Space Antenna (probing massive BH growth via mergers) and by deep multiwavelength electromagnetic observations (probing growth via gas accretion) is particularly promising.more » « less
-
ABSTRACT Supermassive black holes (SMBHs) with masses of ∼109 M⊙ within the first billion year of the universe challenge our conventional understanding of black hole formation and growth. One pathway to these SMBHs proposes that supermassive stars born in pristine atomic cooling haloes yield massive seed BHs evolving to these early SMBHs. This scenario leads to an overly massive BH galaxy (OMBG), in which the BH to stellar mass ratio is initially Mbh/M* ≥ 1, well in excess of the typical values of ∼10−3 at low redshifts. Previously, we have investigated two massive seed BH candidates from the Renaissance simulation and found that they remain outliers on the Mbh–M* relation until the OMBG merges with a much more massive halo at z = 8. In this work, we use Monte-Carlo merger trees to investigate the evolution of the Mbh–M* relation for 50 000 protogalaxies hosting massive BH seeds, across 10 000 trees that merge into a 1012 M⊙ halo at z = 6. We find that up to 60 per cent (depending on growth parameters) of these OMBGs remain strong outliers for several 100 Myr, down to redshifts detectable with JWST and with sensitive X-ray telescopes. This represents a way to diagnose the massive-seed formation pathway for early SMBHs. We expect to find ∼0.1–1 of these objects per JWST Near Infrared Camera (NIRCam) field per unit redshift at z ≳ 6. Recently detected SMBHs with masses of ∼107 M⊙ and low-inferred stellar-mass hosts may be examples of this population.
-
Abstract The first wave of observations with JWST has revealed a striking overabundance of luminous galaxies at early times (
z > 10) compared to models of galaxies calibrated to pre-JWST data. Early observations have also uncovered a large population of supermassive black holes (SMBHs) atz > 6. Because many of the high-z objects appear extended, the contribution of active galactic nuclei (AGNs) to the total luminosity has been assumed to be negligible. In this work, we use a semi-empirical model for assigning AGNs to galaxies to show that active galaxies can boost the stellar luminosity function (LF) enough to solve the overabundance problem while simultaneously remaining consistent with the observed morphologies of high-z sources. We construct a model for the composite AGN+galaxy LF by connecting dark matter halo masses to galaxy and SMBH masses and luminosities, accounting for dispersion in the mapping between host galaxy and SMBH mass and luminosity. By calibrating the model parameters — which characterize the M∙ -M*relation — to a compilation ofz > 10 JWST UVLF data, we show that AGN emission can account for the excess luminosity under a variety of scenarios, including one where 10% of galaxies host BHs of comparable luminosities to their stellar components. Using a sample of simulated objects and real observations, we demonstrate that such low-luminosity AGNs can be `hidden' in their host galaxies and be missed in common morphological analyses. We find that for this explanation to be viable, our model requires a population of BHs that are overmassive (M∙ /M*~ 10-2) with respect to their host galaxies compared to the local relation and are more consistent with the observed relation atz = 4-8. We explore the implications of this model for BH seed properties and comment on observational diagnostics necessary to further investigate this explanation.