skip to main content


Title: The dynamic wound microbiome
Abstract Background Diabetic foot ulcers (DFUs) account for the majority of all limb amputations and hospitalizations due to diabetes complications. With 30 million cases of diabetes in the USA and 500,000 new diagnoses each year, DFUs are a growing health problem. Diabetes patients with limb amputations have high postoperative mortality, a high rate of secondary amputation, prolonged inpatient hospital stays, and a high incidence of re-hospitalization. DFU-associated amputations constitute a significant burden on healthcare resources that cost more than 10 billion dollars per year. Currently, there is no way to identify wounds that will heal versus those that will become severely infected and require amputation. Main body Accurate identification of causative pathogens in diabetic foot ulcers is a critical component of effective treatment. Compared to traditional culture-based methods, advanced sequencing technologies provide more comprehensive and unbiased profiling on wound microbiome with a higher taxonomic resolution, as well as functional annotation such as virulence and antibiotic resistance. In this review, we summarize the latest developments in defining the microbiology of diabetic foot ulcers that have been unveiled by sequencing technologies and discuss both the future promises and current limitations of these approaches. In particular, we highlight the temporal patterns and system dynamics in the diabetic foot microbiome monitored and measured during wound progression and medical intervention, and explore the feasibility of molecular diagnostics in clinics. Conclusion Molecular tests conducted during weekly office visits to clean and examine DFUs would allow clinicians to offer personalized treatment and antibiotic therapy. Personalized wound management could reduce healthcare costs, improve quality of life for patients, and recoup lost productivity that is important not only to the patient, but also to healthcare payers and providers. These efforts could also improve antibiotic stewardship and control the rise of “superbugs” vital to global health.  more » « less
Award ID(s):
2022382
NSF-PAR ID:
10337966
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
BMC Medicine
Volume:
18
Issue:
1
ISSN:
1741-7015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Diabetic foot ulcers are chronic wounds that affect millions and increase the risk of amputation and mortality, highlighting the critical need for their early detection. Recent demonstrations of wearable sensors enable real‐time wound assessment, but they rely on bulky electronics, making them difficult to interface with wounds. Herein, a miniaturized, wireless, battery‐free wound monitor that measures lactate in real‐time and seamlessly integrates with bandages for conformal attachment to the wound bed is introduced. Lactate is selected due to its multifaceted role in initiating healing. Studies in healthy and diabetic mice reveal distinct lactate profiles for normal and impaired healing wounds. A mathematical model based on the sensor data predicts wound closure rate within the first 3 days post‐injury with ≈76% accuracy, which increases to ≈83% when pH is included. These studies underscore the significance of monitoring biomarkers during the inflammation phase, which can offer several benefits, including short‐term use of wound monitors and their easy removal, resulting in lower risks of injury and infection at the wound site. Improvements in prediction accuracy can be achieved by designing mathematical models that build on multiple wound parameters such as pro‐inflammatory and metabolic markers. Achieving this goal will require designing multi‐analyte wound monitors.

     
    more » « less
  2. Abstract

    Chronic wounds are one of the most devastating complications of diabetes and are the leading cause of nontraumatic limb amputation. Despite the progress in identifying factors and promising in vitro results for the treatment of chronic wounds, their clinical translation is limited. Given the range of disruptive processes necessary for wound healing, different pharmacological agents are needed at different stages of tissue regeneration. This requires the development of wearable devices that can deliver agents to critical layers of the wound bed in a minimally invasive fashion. Here, for the first time, a programmable platform is engineered that is capable of actively delivering a variety of drugs with independent temporal profiles through miniaturized needles into deeper layers of the wound bed. The delivery of vascular endothelial growth factor (VEGF) through the miniaturized needle arrays demonstrates that, in addition to the selection of suitable therapeutics, the delivery method and their spatial distribution within the wound bed is equally important. Administration of VEGF to chronic dermal wounds of diabetic mice using the programmable platform shows a significant increase in wound closure, re‐epithelialization, angiogenesis, and hair growth when compared to standard topical delivery of therapeutics.

     
    more » « less
  3. Diabetes mellitus (DM) is associated with musculoskeletal complications—including tendon dysfunction and injury. Patients with DM show altered foot and ankle mechanics that have been attributed to tendon dysfunction as well as impaired recovery post-tendon injury. Despite the problem of DM-related tendon complications, treatment guidelines specific to this population of individuals are lacking. DM impairs tendon structure, function, and healing capacity in tendons throughout the body, but the Achilles tendon is of particular concern and most studied in the diabetic foot. At macroscopic levels, asymptomatic, diabetic Achilles tendons may show morphological abnormalities such as thickening, collagen disorganization, and/or calcific changes at the tendon enthesis. At smaller length scales, DM affects collagen sliding and discrete plasticity due to glycation of collagen. However, how these alterations translate to mechanical deficits observed at larger length scales is an area of continued investigation. In addition to dysfunction of the extracellular matrix, tendon cells such as tenocytes and tendon stem/progenitor cells show significant abnormalities in proliferation, apoptosis, and remodeling capacity in the presence of hyperglycemia and advanced glycation end-products, thus contributing to the disruption of tendon homeostasis and healing. Improving our understanding of the effects of DM on tendons—from molecular pathways to patients—will progress toward targeted therapies in this group at high risk of foot and ankle morbidity. 
    more » « less
  4. Abstract

    Impaired wound healing is a common complication for diabetic patients and effective diabetic wound management remains a clinical challenge. Furthermore, a significant problem that contributes to patient morbidity is the suboptimal quality of healed skin, which often leads to reoccurring chronic skin wounds. Herein, a novel compound and biomaterial building block, panthenol citrate (PC), is developed. It has interesting fluorescence and absorbance properties, and it is shown that PC can be used in soluble form as a wash solution and as a hydrogel dressing to address impaired wound healing in diabetes. PC exhibits antioxidant, antibacterial, anti‐inflammatory, and pro‐angiogenic properties, and promotes keratinocyte and dermal fibroblast migration and proliferation. When applied in a splinted excisional wound diabetic rodent model, PC improves re‐epithelialization, granulation tissue formation, and neovascularization. It also reduces inflammation and oxidative stress in the wound environment. Most importantly, it improves the regenerated tissue quality with enhanced mechanical strength and electrical properties. Therefore, PC could potentially improve wound care management for diabetic patients and play a beneficial role in other tissue regeneration applications.

     
    more » « less
  5. Abstract

    Diabetes mellitus affects an increasing proportion of the population, and is projected to double by 2060. Comorbidities contribute to an interrupted healing process which is delayed, prolonged, and associated with increased susceptibility to infection and unresolved inflammation. This leads to chronic nonhealing wounds and potential amputation. Here, the use of a bioactive angiogenic peptide‐based hydrogel, SLan, is examined to improve early wound healing in diabetic rats, and its performance is compared to clinically utilized biosynthetic peptide‐based materials such as Puramatrix. Streptozotocin‐treated diabetic rats underwent 8 mm biopsy wounding in their dorsum. Wounds are treated with either Low (1 w%) SLan, High (4 w%) SLan, phosphate buffered saline (PBS), Puramatrix, or K2 (an unfunctionalized nonbioactive control sequentially similar to SLan), covered with Tegaderm, and monitored on for a month; animals are sacrificed for histomorphic analyses and immunostaining. Pharmacokinetic analysis showing no trafficking of peptides from the wound into the circulation. SLan groups show similar wound contraction as control groups (Puramatrix, PBS, and K2), however, showing marked improvement in healing in earlier time points, including increased deposition of new mature blood vessels. Altogether the results suggest this material can be used to “jumpstart” the diabetic wound healing process.

     
    more » « less