Abstract Background Diabetic foot ulcers (DFUs) account for the majority of all limb amputations and hospitalizations due to diabetes complications. With 30 million cases of diabetes in the USA and 500,000 new diagnoses each year, DFUs are a growing health problem. Diabetes patients with limb amputations have high postoperative mortality, a high rate of secondary amputation, prolonged inpatient hospital stays, and a high incidence of re-hospitalization. DFU-associated amputations constitute a significant burden on healthcare resources that cost more than 10 billion dollars per year. Currently, there is no way to identify wounds that will heal versus those that will become severely infected and require amputation. Main body Accurate identification of causative pathogens in diabetic foot ulcers is a critical component of effective treatment. Compared to traditional culture-based methods, advanced sequencing technologies provide more comprehensive and unbiased profiling on wound microbiome with a higher taxonomic resolution, as well as functional annotation such as virulence and antibiotic resistance. In this review, we summarize the latest developments in defining the microbiology of diabetic foot ulcers that have been unveiled by sequencing technologies and discuss both the future promises and current limitations of these approaches. In particular, we highlight the temporal patterns and system dynamics in the diabetic foot microbiome monitored and measured during wound progression and medical intervention, and explore the feasibility of molecular diagnostics in clinics. Conclusion Molecular tests conducted during weekly office visits to clean and examine DFUs would allow clinicians to offer personalized treatment and antibiotic therapy. Personalized wound management could reduce healthcare costs, improve quality of life for patients, and recoup lost productivity that is important not only to the patient, but also to healthcare payers and providers. These efforts could also improve antibiotic stewardship and control the rise of “superbugs” vital to global health.
more »
« less
Multimodal Identification of Molecular Factors Linked to Severe Diabetic Foot Ulcers Using Artificial Intelligence
Diabetic foot ulcers (DFUs) are a severe complication of diabetes mellitus (DM), which often lead to hospitalization and non-traumatic amputations in the United States. Diabetes prevalence estimates in South Texas exceed the national estimate and the number of diagnosed cases is higher among Hispanic adults compared to their non-Hispanic white counterparts. San Antonio, a predominantly Hispanic city, reports significantly higher annual rates of diabetic amputations compared to Texas. The late identification of severe foot ulcers minimizes the likelihood of reducing amputation risk. The aim of this study was to identify molecular factors related to the severity of DFUs by leveraging a multimodal approach. We first utilized electronic health records (EHRs) from two large demographic groups, encompassing thousands of patients, to identify blood tests such as cholesterol, blood sugar, and specific protein tests that are significantly associated with severe DFUs. Next, we translated the protein components from these blood tests into their ribonucleic acid (RNA) counterparts and analyzed them using public bulk and single-cell RNA sequencing datasets. Using these data, we applied a machine learning pipeline to uncover cell-type-specific and molecular factors associated with varying degrees of DFU severity. Our results showed that several blood test results, such as the Albumin/Creatinine Ratio (ACR) and cholesterol and coagulation tissue factor levels, correlated with DFU severity across key demographic groups. These tests exhibited varying degrees of significance based on demographic differences. Using bulk RNA-Sequenced (RNA-Seq) data, we found that apolipoprotein E (APOE) protein, a component of lipoproteins that are responsible for cholesterol transport and metabolism, is linked to DFU severity. Furthermore, the single-cell RNA-Seq (scRNA-seq) analysis revealed a cluster of cells identified as keratinocytes that showed overexpression of APOE in severe DFU cases. Overall, this study demonstrates how integrating extensive EHRs data with single-cell transcriptomics can refine the search for molecular markers and identify cell-type-specific and molecular factors associated with DFU severity while considering key demographic differences.
more »
« less
- Award ID(s):
- 2051113
- PAR ID:
- 10575831
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 25
- Issue:
- 19
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 10686
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
OBJECTIVES/GOALS: Target: Computationally identify the markers of ulcer severity and risk of amputation from datasets that include demographics data, clinical, laboratory data, and medical history over 6000 patients. METHODS/STUDY POPULATION: In this study we will use tables of demographics such as age, gender, and ethnicity/race. Inspired by previous research we’ll include wound age (duration in days), wound size, number of concurrent wounds of any etiology, evidence of bioburden/infection, Wagner grade, being non ambulatory, renal dialysis, renal transplant, peripheral vascular disease, and patient hospitalization. Another table will include laboratory vital signs to include physiological variables such as height, weight, body mass index, pulse rate, blood pressure, respiratory rate, and temperature. We’ll include also social data like smoking status, socio-economic status, housing condition. RESULTS/ANTICIPATED RESULTS: Our project aligns with previous efforts to identify high risk Diabetic Foot Ulcer individuals but also takes a different perspective by collecting and marking clinical data from a subset of patients (e.g., severity, Hispanic versus non-Hispanic) and computationally process these data to provide a tool that can identify DFU severity and high-risk patients. We will obtain samples from Hispanics and non-Hispanics because these two groups are likely to have significant differences in the progression of ulcer severity. The rationale is that by comparing these two groups, we will assess and study the factors that are differentially present. It is our expectation that the proposed project will provide an easy-to-use tool for DFU progression and risk of amputation and contribute to identify high-risk individuals. DISCUSSION/SIGNIFICANCE: Diabetes prevalence estimates in Bexar County, TX exceeds national estimates (15.5% vs. 11.3%) and diagnosed cases are higher among Hispanic adults (13.4%) compared to their non-Hispanic white counterparts (9.5%). Late identification of severe foot ulcers minimizes the likelihood of reducing amputation risk.more » « less
-
Diabetes-related complications reflect longstanding damage to small and large vessels throughout the body. In addition to the duration of diabetes and poor glycemic control, genetic factors are important contributors to the variability in the development of vascular complications. Early heritability studies found strong familial clustering of both macrovascular and microvascular complications. However, they were limited by small sample sizes and large phenotypic heterogeneity, leading to less accurate estimates. We take advantage of two independent studies—UK Biobank and the Action to Control Cardiovascular Risk in Diabetes trial—to survey the single nucleotide polymorphism heritability for diabetes microvascular (diabetic kidney disease and diabetic retinopathy) and macrovascular (cardiovascular events) complications. Heritability for diabetic kidney disease was estimated at 29%. The heritability estimate for microalbuminuria ranged from 24 to 60% and was 41% for macroalbuminuria. Heritability estimates of diabetic retinopathy ranged from 6 to 33%, depending on the phenotype definition. More severe diabetes retinopathy possessed higher genetic contributions. We show, for the first time, that rare variants account for much of the heritability of diabetic retinopathy. This study suggests that a large portion of the genetic risk of diabetes complications is yet to be discovered and emphasizes the need for additional genetic studies of diabetes complications.more » « less
-
Abstract Sickle cell disease (SCD) is the most prevalent inherited blood disorder in the world. But the clinical manifestations of the disease are highly variable. In particular, it is currently difficult to predict the adverse outcomes within patients with SCD, such as, vasculopathy, thrombosis, and stroke. Therefore, for most effective and timely interventions, a predictive analytic strategy is desirable. In this study, we evaluate the endothelial and prothrombotic characteristics of blood outgrowth endothelial cells (BOECs) generated from blood samples of SCD patients with known differences in clinical severity of the disease. We present a method to evaluate patient‐specific vaso‐occlusive risk by combining novel RNA‐seq and organ‐on‐chip approaches. Through differential gene expression (DGE) and pathway analysis we find that BOECs from SCD patients exhibit an activated state through cell adhesion molecule (CAM) and cytokine signaling pathways among many others. In agreement with clinical symptoms of patients, DGE analyses reveal that patient with severe SCD had a greater extent of endothelial activation compared to patient with milder symptoms. This difference is confirmed by performing qRT‐PCR of endothelial adhesion markers like E‐selectin, P‐selectin, tissue factor, and Von Willebrand factor. Finally, the differential regulation of the proinflammatory phenotype is confirmed through platelet adhesion readouts in our BOEC vessel‐chip. Taken together, we hypothesize that these easily blood‐derived endothelial cells evaluated through RNA‐seq and organ‐on‐chips may serve as a biotechnique to predict vaso‐occlusive episodes in SCD patients and will ultimately allow better therapeutic interventions.more » « less
-
Abstract Objective Modern healthcare data reflect massive multi-level and multi-scale information collected over many years. The majority of the existing phenotyping algorithms use case–control definitions of disease. This paper aims to study the time to disease onset and progression and identify the time-varying risk factors that drive them. Materials and Methods We developed an algorithmic approach to phenotyping the incidence of diseases by consolidating data sources from the UK Biobank (UKB), including primary care electronic health records (EHRs). We focused on defining events, event dates, and their censoring time, including relevant terms and existing phenotypes, excluding generic, rare, or semantically distant terms, forward-mapping terminology terms, and expert review. We applied our approach to phenotyping diabetes complications, including a composite cardiovascular disease (CVD) outcome, diabetic kidney disease (DKD), and diabetic retinopathy (DR), in the UKB study. Results We identified 49 049 participants with diabetes. Among them, 1023 had type 1 diabetes (T1D), and 40 193 had type 2 diabetes (T2D). A total of 23 833 diabetes subjects had linked primary care records. There were 3237, 3113, and 4922 patients with CVD, DKD, and DR events, respectively. The risk prediction performance for each outcome was assessed, and our results are consistent with the prediction area under the ROC (receiver operating characteristic) curve (AUC) of standard risk prediction models using cohort studies. Discussion and Conclusion Our publicly available pipeline and platform enable streamlined curation of incidence events, identification of time-varying risk factors underlying disease progression, and the definition of a relevant cohort for time-to-event analyses. These important steps need to be considered simultaneously to study disease progression.more » « less
An official website of the United States government

