Fair consensus building combines the preferences of multiple rankers into a single consensus ranking, while ensuring any group defined by a protected attribute (such as race or gender) is not disadvantaged compared to other groups. Manually generating a fair consensus ranking is time-consuming and impractical- even for a fairly small number of candidates. While algorithmic approaches for auditing and generating fair consensus rankings have been developed, these have not been operationalized in interactive systems. To bridge this gap, we introduce FairFuse, a visualization system for generating, analyzing, and auditing fair consensus rankings. We construct a data model which includes base rankings entered by rankers, augmented with measures of group fairness, and algorithms for generating consensus rankings with varying degrees of fairness. We design novel visualizations that encode these measures in a parallel-coordinates style rank visualization, with interactions for generating and exploring fair consensus rankings. We describe use cases in which FairFuse supports a decision-maker in ranking scenarios in which fairness is important, and discuss emerging challenges for future efforts supporting fairness-oriented rank analysis. Code and demo videos available at https://osf.io/hd639/. 
                        more » 
                        « less   
                    
                            
                            MANI-RANK: Multi-attribute and Intersectional Fairness for Consensus Ranking
                        
                    
    
            Combining the preferences of many rankers into one single consensus ranking is critical for consequential applications from hiring and admissions to lending. While group fairness has been extensively studied for classification, group fairness in rankings and in particular rank aggregation remains in its infancy. Recent work introduced the concept of fair rank aggregation for combining rankings but restricted to the case when candidates have a single binary protected attribute, i.e., they fall into two groups only. Yet it remains an open problem how to create a consensus ranking that represents the preferences of all rankers while ensuring fair treatment for candidates with multiple protected attributes such as gender, race, and nationality. In this work, we are the first to define and solve this open Multi-attribute Fair Consensus Ranking (MFCR) problem. As a foundation, we design novel group fairness criteria for rankings, called MANI-Rank, ensuring fair treatment of groups defined by individual protected attributes and their intersection. Leveraging the MANI-Rank criteria, we develop a series of algorithms that for the first time tackle the MFCR problem. Our experimental study with a rich variety of consensus scenarios demonstrates our MFCR methodology is the only approach to achieve both intersectional and protected attribute fairness while also representing the preferences expressed through many base rankings. Our real-world case study on merit scholarships illustrates the effectiveness of our MFCR methods to mitigate bias across multiple protected attributes and their intersections. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2007932
- PAR ID:
- 10338006
- Date Published:
- Journal Name:
- IEEE International Conference on Data Engineering (ICDE)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Preference aggregation mechanisms help decision-makers combine diverse preference rankings produced by multiple voters into a single consensus ranking. Prior work has developed methods for aggregating multiple rankings into a fair consensus over the same set of candidates. Yet few real-world problems present themselves as such precisely formulated aggregation tasks with each voter fully ranking all candidates. Instead, preferences are often expressed as rankings over partial and even disjoint subsets of candidates. For instance, hiring committee members typically opt to rank their top choices instead of exhaustively ordering every single job applicant. However, the existing literature does not offer a framework for characterizing nor ensuring group fairness in such partial preference aggregation tasks. Unlike fully ranked settings, partial preferences imply both a selection decision of whom to rank plus an ordering decision of how to rank the selected candidates. Our work fills this gap by conceptualizing the open problem of fair partial preference aggregation. We introduce an impossibility result for fair selection from partial preferences and design a computational framework showing how we can navigate this obstacle. Inspired by Single Transferable Voting, our proposed solution PreFair produces consensus rankings that are fair in the selection of candidates and also in their relative ordering. Our experimental study demonstrates that PreFair achieves the best performance in this dual fairness objective compared to state-of-the-art alternatives adapted to this new problem while still satisfying voter preferences.more » « less
- 
            In social choice, traditional Kemeny rank aggregation combines the preferences of voters, expressed as rankings, into a single consensus ranking without consideration for how this ranking may unfairly affect marginalized groups (i.e., racial or gender). Developing fair rank aggregation methods is critical due to their societal influence in applications prioritizing job applicants, funding proposals, and scheduling medical patients. In this work, we introduce the Fair Exposure Kemeny Aggregation Problem (FairExp-kap) for combining vast and diverse voter preferences into a single ranking that is not only a suitable consensus, but ensures opportunities are not withheld from marginalized groups. In formalizing FairExp-kap, we extend the fairness of exposure notion from information retrieval to the rank aggregation context and present a complimentary metric for voter preference representation. We design algorithms for solving FairExp-kap that explicitly account for position bias, a common ranking-based concern that end-users pay more attention to higher ranked candidates. epik solves FairExp-kap exactly by incorporating non-pairwise fairness of exposure into the pairwise Kemeny optimization; while the approximate epira is a candidate swapping algorithm, that guarantees ranked candidate fairness. Utilizing comprehensive synthetic simulations and six real-world datasets, we show the efficacy of our approach illustrating that we succeed in mitigating disparate group exposure unfairness in consensus rankings, while maximally representing voter preferences.more » « less
- 
            For applications where multiple stakeholders provide recommendations, a fair consensus ranking must not only ensure that the preferences of rankers are well represented, but must also mitigate disadvantages among socio-demographic groups in the final result. However, there is little empirical guidance on the value or challenges of visualizing and integrating fairness metrics and algorithms into human-in-the-loop systems to aid decision-makers. In this work, we design a study to analyze the effectiveness of integrating such fairness metrics-based visualization and algorithms. We explore this through a task-based crowdsourced experiment comparing an interactive visualization system for constructing consensus rankings, ConsensusFuse, with a similar system that includes visual encodings of fairness metrics and fair-rank generation algorithms, FairFuse. We analyze the measure of fairness, agreement of rankers’ decisions, and user interactions in constructing the fair consensus ranking across these two systems. In our study with 200 participants, results suggest that providing these fairness-oriented support features nudges users to align their decision with the fairness metrics while minimizing the tedious process of manually having to amend the consensus ranking. We discuss the implications of these results for the design of next-generation fairness oriented-systems and along with emerging directions for future research.more » « less
- 
            Rated preference aggregation is conventionally performed by averaging ratings from multiple evaluators to create a consensus ordering of candidates from highest to lowest average rating. Ideally, the consensus is fair, meaning critical opportunities are not withheld from marginalized groups of candidates, even if group biases may be present in the to-be-combined ratings. Prior work operationalizing fairness in preference aggregation is limited to settings where evaluators provide rankings of candidates (e.g., Joe > Jack > Jill). Yet, in practice, many evaluators assign ratings such as Likert scales or categories (e.g., yes, no, maybe) to each candidate. Ratings convey different information than rankings leading to distinct fairness issues during their aggregation. The existing literature does not characterize these fairness concerns nor provide applicable bias-mitigation solutions. Unlike the ranked setting studied previously, two unique forms of bias arise in rating aggregation. First, biased rating stems from group disparities in to-be-aggregated evaluator ratings. Second, biased tie-breaking occurs because ties in average ratings must be resolved when aggregating ratings into a consensus ranking, and this tie-breaking act can unfairly advantage certain groups. To address this gap, we define the open fair rated preference aggregation problem and introduce the corresponding Fate methodology. Fate offers the first group fairness metric specifically for rated preference data. We propose two Fate algorithms. Fate-Break works in settings when ties need to be broken, explicitly fairness-enhancing such processes without lowering consensus utility. Fate-Rate mitigates disparities in how groups are rated, by using a Markov-chain approach to generate outcomes where groups are, in as much as possible, equally represented. Our experimental study illustrates the FATE methods provide the most bias-mitigation compared to adapting prior methods to fair tie-breaking and rating aggregation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    