We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix. We then further characterize the second-order equivalence of the sketched pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to sketched ridge regression. Last, we prove that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice. 
                        more » 
                        « less   
                    
                            
                            A projector-based approach to quantifying total and excess uncertainties for sketched linear regression
                        
                    
    
            Abstract Linear regression is a classic method of data analysis. In recent years, sketching—a method of dimension reduction using random sampling, random projections or both—has gained popularity as an effective computational approximation when the number of observations greatly exceeds the number of variables. In this paper, we address the following question: how does sketching affect the statistical properties of the solution and key quantities derived from it? To answer this question, we present a projector-based approach to sketched linear regression that is exact and that requires minimal assumptions on the sketching matrix. Therefore, downstream analyses hold exactly and generally for all sketching schemes. Additionally, a projector-based approach enables derivation of key quantities from classic linear regression that account for the combined model- and algorithm-induced uncertainties. We demonstrate the usefulness of a projector-based approach in quantifying and enabling insight on excess uncertainties and bias-variance decompositions for sketched linear regression. Finally, we demonstrate how the insights from our projector-based analyses can be used to produce practical sketching diagnostics to aid the design of judicious sketching schemes. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10338023
- Date Published:
- Journal Name:
- Information and Inference: A Journal of the IMA
- ISSN:
- 2049-8772
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)In order to compute fast approximations to the singular value decompositions (SVD) of very large matrices, randomized sketching algorithms have become a leading approach. However, a key practical difficulty of sketching an SVD is that the user does not know how far the sketched singular vectors/values are from the exact ones. Indeed, the user may be forced to rely on analytical worst-case error bounds, which may not account for the unique structure of a given problem. As a result, the lack of tools for error estimation often leads to much more computation than is really necessary. To overcome these challenges, this paper develops a fully data-driven bootstrap method that numerically estimates the actual error of sketched singular vectors/values. Furthermore, the method is computationally inexpensive, because it operates only on sketched objects, and hence it requires no extra passes over the full matrix being factored.more » « less
- 
            Matrix sketching is a powerful tool for reducing the size of large data matrices. Yet there are fundamental limitations to this size reduction when we want to recover an accurate estimator for a task such as least square regression. We show that these limitations can be circumvented in the distributed setting by designing sketching methods that minimize the bias of the estimator, rather than its error. In particular, we give a sparse sketching method running in optimal space and current matrix multiplication time, which recovers a nearly-unbiased least squares estimator using two passes over the data. This leads to new communication-efficient distributed averaging algorithms for least squares and related tasks, which directly improve on several prior approaches. Our key novelty is a new bias analysis for sketched least squares, giving a sharp characterization of its dependence on the sketch sparsity. The techniques include new higher moment restricted Bai-Silverstein inequalities, which are of independent interest to the non-asymptotic analysis of deterministic equivalents for random matrices that arise from sketching.more » « less
- 
            Given a matrix A ∈ ℝn\texttimes{}d and a vector b ∈ ℝn, we consider the regression problem with ℓ∞ guarantees: finding a vector x′ ∈ ℝd such that $$||x'-x^* ||_infty leq frac{epsilon}{sqrt{d}}cdot ||Ax^*-b||_2cdot ||A^dagger||$$, where x* = arg minx∈Rd ||Ax – b||2. One popular approach for solving such ℓ2 regression problem is via sketching: picking a structured random matrix S ∈ ℝm\texttimes{}n with m < n and S A can be quickly computed, solve the "sketched" regression problem arg minx∈ℝd ||S Ax – Sb||2. In this paper, we show that in order to obtain such ℓ∞ guarantee for ℓ2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m = ε-2d log3(n/δ) such that solving the sketched regression problem gives the ℓ∞ guarantee, with probability at least 1 – δ. Moreover, the matrix S A can be computed in time O(nd log n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in (Price et al., 2017), in which a superlinear in d rows, m = Ω(ε-2d1+γ) for γ ∈ (0, 1) is required. Moreover, we develop a novel analytical framework for ℓ∞ guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in (Song \& Yu, 2021). Our analysis is much simpler and more general than that of (Price et al., 2017). Leveraging this framework, we extend the ℓ∞ guarantee regression result to dense sketching matrices for computing the fast tensor product of vectors.more » « less
- 
            We consider sketched approximate matrix multiplication and ridge regression in the novel setting of localized sketching, where at any given point, only part of the data matrix is available. This corresponds to a block diagonal structure on the sketching matrix. We show that, under mild conditions, block diagonal sketching matrices require only 𝑂(\sr/𝜖2) and 𝑂(\sd𝜆/𝜖) total sample complexity for matrix multiplication and ridge regression, respectively. This matches the state-of-the-art bounds that are obtained using global sketching matrices. The localized nature of sketching considered allows for different parts of the data matrix to be sketched independently and hence is more amenable to computation in distributed and streaming settings and results in a smaller memory and computational footprint.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    