skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards a Decomposition-Optimal Algorithm for Counting and Sampling Arbitrary Motifs in Sublinear Time
We consider the problem of sampling and approximately counting an arbitrary given motif H in a graph G, where access to G is given via queries: degree, neighbor, and pair, as well as uniform edge sample queries. Previous algorithms for these tasks were based on a decomposition of H into a collection of odd cycles and stars, denoted D^*(H) = {O_{k₁},...,O_{k_q}, S_{p₁},...,S_{p_𝓁}}. These algorithms were shown to be optimal for the case where H is a clique or an odd-length cycle, but no other lower bounds were known. We present a new algorithm for sampling arbitrary motifs which, up to poly(log n) factors, is always at least as good, and for most graphs G is strictly better. The main ingredient leading to this improvement is an improved uniform algorithm for sampling stars, which might be of independent interest, as it allows to sample vertices according to the p-th moment of the degree distribution. Finally, we prove that this algorithm is decomposition-optimal for decompositions that contain at least one odd cycle. These are the first lower bounds for motifs H with a nontrivial decomposition, i.e., motifs that have more than a single component in their decomposition.  more » « less
Award ID(s):
2006664
PAR ID:
10338043
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
RANDOM 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Counting and uniformly sampling motifs in a graph are fundamental algorithmic tasks with numerous applications across multiple fields. Since these problems are computationally expensive, recent efforts have focused on devising sublinear-time algorithms for these problems. We consider the model where the algorithm gets a constant size motif H and query access to a graph G, where the allowed queries are degree, neighbor, and pair queries, as well as uniform edge sample queries. In the sampling task, the algorithm is required to output a uniformly distributed copy of H in G (if one exists), and in the counting task it is required to output a good estimate to the number of copies of H in G. Previous algorithms for the uniform sampling task were based on a decomposition of H into a collection of odd cycles and stars, denoted D∗(H) = {Ok1 , ...,Okq , Sp1 , ..., Spℓ19 }. These algorithms were shown to be optimal for the case where H is a clique or an odd-length cycle, but no other lower bounds were known. We present a new algorithm for sampling arbitrary motifs which, up to poly(log n) factors, for any motif H whose decomposition contains at least two components or at least one star, is always preferable. The main ingredient leading to this improvement is an improved uniform algorithm for sampling stars, which might be of independent interest, as it allows to sample vertices according to the p-th moment of the degree distribution. We further show how to use our sampling algorithm to get an approximate counting algorithm, with essentially the same complexity. Finally, we prove that this algorithm is decomposition-optimal for decompositions that contain at least one odd cycle. That is, we prove that for any decomposition D that contains at least one odd cycle, there exists a motif HD 30 with decomposition D, and a family of graphs G, so that in order to output a uniform copy of H in a uniformly chosen graph in G, the number of required queries matches our upper bound. These are the first lower bounds for motifs H with a nontrivial decomposition, i.e., motifs that have more than a single component in their decomposition. 
    more » « less
  2. Counting small subgraphs, referred to as motifs, in large graphs is a fundamental task in graph analysis, extensively studied across various contexts and computational models. In the sublinear-time regime, the relaxed problem of approximate counting has been explored within two prominent query frameworks: the standard model, which permits degree, neighbor, and pair queries, and the strictly more powerful augmented model, which additionally allows for uniform edge sampling. Currently, in the standard model, (opti- mal) results have been established only for approximately counting edges, stars, and cliques, all of which have a radius of one. This contrasts sharply with the state of affairs in the augmented model, where algorithmic results (some of which are optimal) are known for any input motif, leading to a disparity which we term the “scope gap" between the two models. In this work, we make significant progress in bridging this gap. Our approach draws inspiration from recent advancements in the augmented model and utilizes a framework centered on counting by uniform sampling, thus allowing us to establish new results in the standard model and simplify on previous results. In particular, our first, and main, contribution is a new algorithm in the standard model for approximately counting any Hamiltonian motif in sublinear time, where the complexity of the algorithm is the sum of two terms. One term equals the complexity of the known algorithms by Assadi, Kapralov, and Khanna (ITCS 2019) and Fichtenberger and Peng (ICALP 2020) in the (strictly stronger) augmented model and the other is an additional, necessary, additive overhead. Our second contribution is a variant of our algorithm that en- ables nearly uniform sampling of these motifs, a capability pre- viously limited in the standard model to edges and cliques. Our third contribution is to introduce even simpler algorithms for stars and cliques by exploiting their radius-one property. As a result, we simplify all previously known algorithms in the standard model for stars (Gonen, Ron, Shavitt (SODA 2010)), triangles (Eden, Levi, Ron Seshadhri (FOCS 2015)) and cliques (Eden, Ron, Seshadri (STOC 2018)). 
    more » « less
  3. We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise ϵ-close to the uniform distribution, in an amortized-efficient fashion. We consider the adjacency list query model, where access to a graph G is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and Rosenbaum provided upper and lower bounds of Θ∗(n/ √ m) for sampling a single edge in general graphs (where O ∗(·) suppresses poly(1/ϵ) and poly(log n) dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples q in advance, has an overall cost that is sublinear in q, namely, O∗(√ q · (n/ √ m)), which is strictly preferable to O∗(q · (n/ √ m)) cost resulting from q invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, Tětek and Thorup (arXiv, preprint) proved that this bound is essentially optimal. 
    more » « less
  4. We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise ε-close to the uniform distribution, in an amortized-efficient fashion. We consider the adjacency list query model, where access to a graph G is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and Rosenbaum provided upper and lower bounds of Θ^*(n/√ m) for sampling a single edge in general graphs (where O^*(⋅) suppresses poly(1/ε) and poly(log n) dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples q in advance, has an overall cost that is sublinear in q, namely, O^*(√ q ⋅(n/√ m)), which is strictly preferable to O^*(q⋅ (n/√ m)) cost resulting from q invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, Tětek and Thorup (arXiv, preprint) proved that this bound is essentially optimal. 
    more » « less
  5. We show how any PAC learning algorithm that works under the uniform distribution can be transformed, in a blackbox fashion, into one that works under an arbitrary and unknown distribution ‍D. The efficiency of our transformation scales with the inherent complexity of ‍D, running in (n, (md)d) time for distributions over n whose pmfs are computed by depth-d decision trees, where m is the sample complexity of the original algorithm. For monotone distributions our transformation uses only samples from ‍D, and for general ones it uses subcube conditioning samples. A key technical ingredient is an algorithm which, given the aforementioned access to D, produces an optimal decision tree decomposition of D: an approximation of D as a mixture of uniform distributions over disjoint subcubes. With this decomposition in hand, we run the uniform-distribution learner on each subcube and combine the hypotheses using the decision tree. This algorithmic decomposition lemma also yields new algorithms for learning decision tree distributions with runtimes that exponentially improve on the prior state of the art—results of independent interest in distribution learning. 
    more » « less