Synthetic DNA for Cell Surface Engineering: Experimental Comparison between Click Conjugation and Lipid Insertion in Terms of Cell Viability, Engineering Efficiency, and Displaying Stability
- Award ID(s):
- 1802953
- PAR ID:
- 10338078
- Date Published:
- Journal Name:
- ACS Applied Materials & Interfaces
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 1944-8244
- Page Range / eLocation ID:
- 3900 to 3909
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Build-a-Cell is a global network of researchers that aims to develop synthetic living cells within the next decade. These cells will revolutionize the biotechnology industry by providing scientists and engineers with a more complete understanding of biology. Researchers can already replicate many cellular functions individually, but combining them into a single cell remains a significant challenge. This integration step will require the type of large-scale collaboration made possible by Build-a-Cell’s open, collective structure. Beyond the lab, Build-a-Cell addresses policy issues and biosecurity concerns associated with synthetic cells. The following review discusses Build-a-Cell’s history, function, and goals.more » « less
-
Abstract Cell therapies are emerging as a promising new therapeutic modality in medicine, generating effective treatments for previously incurable diseases. Clinical success of cell therapies has energized the field of cellular engineering, spurring further exploration of novel approaches to improve their therapeutic performance. Engineering of cell surfaces using natural and synthetic materials has emerged as a valuable tool in this endeavor. This review summarizes recent advances in the development of technologies for decorating cell surfaces with various materials including nanoparticles, microparticles, and polymeric coatings, focusing on the ways in which surface decorations enhance carrier cells and therapeutic effects. Key benefits of surface‐modified cells include protecting the carrier cell, reducing particle clearance, enhancing cell trafficking, masking cell‐surface antigens, modulating inflammatory phenotype of carrier cells, and delivering therapeutic agents to target tissues. While most of these technologies are still in the proof‐of‐concept stage, the promising therapeutic efficacy of these constructs from in vitro and in vivo preclinical studies has laid a strong foundation for eventual clinical translation. Cell surface engineering with materials can imbue a diverse range of advantages for cell therapy, creating opportunities for innovative functionalities, for improved therapeutic efficacy, and transforming the fundamental and translational landscape of cell therapies.more » « less
-
Abstract The cell membrane is not only a physical barrier, but also a functional organelle that regulates the communication between a cell and its environment. The ability to functionalize the cell membrane with synthetic molecules or nanostructures would advance cellular functions beyond what evolution has provided. The aim of this Minireview is to introduce recent progress in using synthetic DNA and DNA‐based nanostructures for cell‐surface engineering. We first introduce chemical conjugation and physical binding methods for monovalent and polyvalent surface engineering. We then introduce the application of these methods for either the promotion or inhibition of cell–environment communication in numerous applications, including the promotion of cell–cell recognition, regulation of intracellular pathways, protection of therapeutic cells, and sensing of the intracellular and extracellular microenvironments. Lastly, we summarize current challenges existing in this area and potential solutions to solve these challenges.more » « less
-
Abstract The cell membrane is not only a physical barrier, but also a functional organelle that regulates the communication between a cell and its environment. The ability to functionalize the cell membrane with synthetic molecules or nanostructures would advance cellular functions beyond what evolution has provided. The aim of this Minireview is to introduce recent progress in using synthetic DNA and DNA‐based nanostructures for cell‐surface engineering. We first introduce chemical conjugation and physical binding methods for monovalent and polyvalent surface engineering. We then introduce the application of these methods for either the promotion or inhibition of cell–environment communication in numerous applications, including the promotion of cell–cell recognition, regulation of intracellular pathways, protection of therapeutic cells, and sensing of the intracellular and extracellular microenvironments. Lastly, we summarize current challenges existing in this area and potential solutions to solve these challenges.more » « less
An official website of the United States government

