skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SMARPs and SHARPs: Two Solar Cycles of Active Region Data
Abstract We present a new data product, called Space-Weather MDI Active Region Patches (SMARPs), derived from maps of the solar surface magnetic field taken by the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Together with the Space-Weather HMI Active Region Patches (SHARPs), derived from similar maps taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, these data provide a continuous and seamless set of maps and keywords that describe every active region observed over the last two solar cycles, from 1996 to the present day. In this paper, we describe the SMARP data and compare it to the SHARP data.  more » « less
Award ID(s):
1922713
PAR ID:
10338150
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
256
Issue:
2
ISSN:
0067-0049
Page Range / eLocation ID:
26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solar flare prediction studies have been recently conducted with the use of Space-Weather MDI (Michelson Doppler Imager on board Solar and Heliospheric Observatory) Active Region Patches (SMARPs) and Space-Weather HMI (Helioseismic and Magnetic Imager on board Solar Dynamics Observatory) Active Region Patches (SHARPs), which are two currently available data products containing magnetic field characteristics of solar active regions (ARs). The present work is an effort to combine them into one data product, and perform some initial statistical analyses in order to further expand their application in space-weather forecasting. The combined data are derived by filtering, rescaling, and merging the SMARP and SHARP parameters, which can then be spatially reduced to create uniform multivariate time series. The resulting combined MDI–HMI data set currently spans the period between 1996 April 4 and 2022 December 13, and may be extended to a more recent date. This provides an opportunity to correlate and compare it with other space-weather time series, such as the daily solar flare index or the statistical properties of the soft X-ray flux measured by the Geostationary Operational Environmental Satellites. Time-lagged cross correlation indicates that a relationship may exist, where some magnetic field properties of ARs lead the flare index in time. Applying the rolling-window technique makes it possible to see how this leader–follower dynamic varies with time. Preliminary results indicate that areas of high correlation generally correspond to increased flare activity during the peak solar cycle. 
    more » « less
  2. Abstract The prediction of solar energetic particle (SEP) events garners increasing interest as space missions extend beyond Earth’s protective magnetosphere. These events, which are, in most cases, products of magnetic-reconnection-driven processes during solar flares or fast coronal-mass-ejection-driven shock waves, pose significant radiation hazards to aviation, space-based electronics, and particularly space exploration. In this work, we utilize the recently developed data set that combines the Solar Dynamics Observatory/Space-weather Helioseismic and Magnetic Imager Active Region Patches and the Solar and Heliospheric Observatory/Space-weather Michelson Doppler Imager Active Region Patches. We employ a suite of machine learning strategies, including support vector machines (SVMs) and regression models, to evaluate the predictive potential of this new data product for a forecast of post-solar flare SEP events. Our study indicates that despite the augmented volume of data, the prediction accuracy reaches 0.7 ± 0.1 (experimental setting), which aligns with but does not exceed these published benchmarks. A linear SVM model with training and testing configurations that mimic an operational setting (positive–negative imbalance) reveals a slight increase (+0.04 ± 0.05) in the accuracy of a 14 hr SEP forecast compared to previous studies. This outcome emphasizes the imperative for more sophisticated, physics-informed models to better understand the underlying processes leading to SEP events. 
    more » « less
  3. Magnetic polarity inversion lines (PILs) detected in solar active regions have long been recognized as arguably the most essential feature for triggering the instabilities such as flares and eruptive events (i.e., eruptive flares and coronal mass ejections). In recent years, efforts have been focused on using features engineered from PILs for solar eruption prediction. However, PIL rasters and metadata are often generated as byproducts and are not accessible for public use, which limits their utilization in data-intensive space weather analytics applications. We introduce a large-scale publicly available PIL dataset covering practically the entire solar cycle 24 for applying to various space weather forecasting and analytics tasks. The dataset is created using line-of-sight (LoS) magnetograms from the Solar Dynamics Observatory's (SDO) Helioseismic and Magnetic Imager (HMI) Active Region Patches (HARPs) that involves 4,090 HARP series ranging from May 2010 to March 2019. This dataset includes three PIL-related binary masks of rasters: the actual PILs as per the spatial analysis of the magnetograms, the region of polarity inversion (RoPI), and the convex hull of PILs (convex closure of the set of detected PILs), along with time series structured metadata extracted from these masks. 
    more » « less
  4. Abstract We present a transformer model, named DeepHalo, to predict the occurrence of halo coronal mass ejections (CMEs). Our model takes as input an active region (AR) and a profile, where the profile contains a time series of data samples in the AR that are collected 24 hr before the beginning of a day, and predicts whether the AR would produce a halo CME during that day. Each data sample contains physical parameters, or features, derived from photospheric vector magnetic field data taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We survey and match CME events in the Space Weather Database Of Notification, Knowledge, Information and the Large Angle and Spectrometric Coronagraph CME Catalog, and we compile a list of CMEs, including halo CMEs and nonhalo CMEs, associated with ARs in the period between 2010 November and 2023 August. We use the information gathered above to build the labels (positive vs. negative) of the data samples and profiles at hand, where the labels are needed for machine learning. Experimental results show that DeepHalo with a true skill statistic (TSS) score of 0.907 outperforms a closely related long short-term memory network with a TSS score of 0.821. To our knowledge, this is the first time that the transformer model has been used for halo CME prediction. 
    more » « less
  5. Abstract Solar flares, especially the M- and X-class flares, are often associated with coronal mass ejections. They are the most important sources of space weather effects, which can severely impact the near-Earth environment. Thus it is essential to forecast flares (especially the M- and X-class ones) to mitigate their destructive and hazardous consequences. Here, we introduce several statistical and machine-learning approaches to the prediction of an active region’s (AR) flare index (FI) that quantifies the flare productivity of an AR by taking into account the number of different class flares within a certain time interval. Specifically, our sample includes 563 ARs that appeared on the solar disk from 2010 May to 2017 December. The 25 magnetic parameters, provided by the Space-weather HMI Active Region Patches (SHARP) from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, characterize coronal magnetic energy stored in ARs by proxy and are used as the predictors. We investigate the relationship between these SHARP parameters and the FI of ARs with a machine-learning algorithm (spline regression) and the resampling method (Synthetic Minority Oversampling Technique for Regression with Gaussian Noise). Based on the established relationship, we are able to predict the value of FIs for a given AR within the next 1 day period. Compared with other four popular machine-learning algorithms, our methods improve the accuracy of FI prediction, especially for a large FI. In addition, we sort the importance of SHARP parameters by the Borda count method calculated from the ranks that are rendered by nine different machine-learning methods. 
    more » « less