skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 25, 2026

Title: Prediction of Halo Coronal Mass Ejections Using SDO/HMI Vector Magnetic Data Products and a Transformer Model
Abstract We present a transformer model, named DeepHalo, to predict the occurrence of halo coronal mass ejections (CMEs). Our model takes as input an active region (AR) and a profile, where the profile contains a time series of data samples in the AR that are collected 24 hr before the beginning of a day, and predicts whether the AR would produce a halo CME during that day. Each data sample contains physical parameters, or features, derived from photospheric vector magnetic field data taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We survey and match CME events in the Space Weather Database Of Notification, Knowledge, Information and the Large Angle and Spectrometric Coronagraph CME Catalog, and we compile a list of CMEs, including halo CMEs and nonhalo CMEs, associated with ARs in the period between 2010 November and 2023 August. We use the information gathered above to build the labels (positive vs. negative) of the data samples and profiles at hand, where the labels are needed for machine learning. Experimental results show that DeepHalo with a true skill statistic (TSS) score of 0.907 outperforms a closely related long short-term memory network with a TSS score of 0.821. To our knowledge, this is the first time that the transformer model has been used for halo CME prediction.  more » « less
Award ID(s):
2149748 2206886 2309939 2108235 2300341 2320147 2228996 2425602
PAR ID:
10575003
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
981
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For integrating CME data to their solar sources, we perform a confidence-based scoring process that involves spatial and temporal data integration. For each GOES >C1.0 flare, we identify the likely CME candidate(s) with a temporal search using the start and peak times of flares and first detection time of CMEs. In this step, we check if the CMEs’ first detection time is between 30 minutes before the flare’s start time and 60 minutes after the flare’s peak time. Then, for each potential CME candidate, if any, we generate a confidence score between 1 to 5 (from lowest to highest) based on checking four additional criteria where each criteria gives an extra confidence point for the association: 1. Determine a potential one-to-one mapping between a given flare and a CME, in the case of only a single CME that satisfies the temporal search. 2. Check if the flare’s principal angle is in the same solar-disk quadrant as the CME’s principal angle, which is assumed as a 8 degree margin for boundary conditions. 3. Check if the difference between the flare’s principal angle and the CME’s principal angle (i.e., difference angle) is less than the CME’s observed width. 4. Check if the difference angle is less than 60 degrees threshold where such threshold is designated for wide CMEs (i.e., Halo and partial Halo) whose width almost always fulfill the width-based criterion in the previous criteria and aims to provide a more strict level of confidence. At the end of the integration procedure, CMEs are associated with flares using the maximum confidence score and therefore are connected to their most likely solar source. If there are multiple CMEs with the same high score, only those with the lowest difference angle between flare and the CME will be connected. Due to the fact that this process is not manually verified, we expect to generate certain ‘noisy’ data points. However, for overall model building, these data points should have a minimal statistical significance and hence a minimal impact. 
    more » « less
  2. Abstract Solar energetic particles (SEPs) are an essential source of space radiation, and are hazardous for humans in space, spacecraft, and technology in general. In this paper, we propose a deep-learning method, specifically a bidirectional long short-term memory (biLSTM) network, to predict if an active region (AR) would produce an SEP event given that (i) the AR will produce an M- or X-class flare and a coronal mass ejection (CME) associated with the flare, or (ii) the AR will produce an M- or X-class flare regardless of whether or not the flare is associated with a CME. The data samples used in this study are collected from the Geostationary Operational Environmental Satellite's X-ray flare catalogs provided by the National Centers for Environmental Information. We select M- and X-class flares with identified ARs in the catalogs for the period between 2010 and 2021, and find the associations of flares, CMEs, and SEPs in the Space Weather Database of Notifications, Knowledge, Information during the same period. Each data sample contains physical parameters collected from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Experimental results based on different performance metrics demonstrate that the proposed biLSTM network is better than related machine-learning algorithms for the two SEP prediction tasks studied here. We also discuss extensions of our approach for probabilistic forecasting and calibration with empirical evaluation. 
    more » « less
  3. Abstract Coronal mass ejections (CMEs) are massive solar eruptions, which have a significant impact on Earth. In this paper, we propose a new method, called DeepCME, to estimate two properties of CMEs, namely, CME mass and kinetic energy. Being able to estimate these properties helps better understand CME dynamics. Our study is based on the CME catalog maintained at the Coordinated Data Analysis Workshops Data Center, which contains all CMEs manually identified since 1996 using the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory. We use LASCO C2 data in the period between 1996 January and 2020 December to train, validate, and test DeepCME through 10-fold cross validation. The DeepCME method is a fusion of three deep-learning models, namely ResNet, InceptionNet, and InceptionResNet. Our fusion model extracts features from LASCO C2 images, effectively combining the learning capabilities of the three component models to jointly estimate the mass and kinetic energy of CMEs. Experimental results show that the fusion model yields a mean relative error (MRE) of 0.013 (0.009, respectively) compared to the MRE of 0.019 (0.017, respectively) of the best component model InceptionResNet (InceptionNet, respectively) in estimating the CME mass (kinetic energy, respectively). To our knowledge, this is the first time that deep learning has been used for CME mass and kinetic energy estimations. 
    more » « less
  4. Abstract The application of machine learning to the study of coronal mass ejections (CMEs) and their impacts on Earth has seen significant growth recently. Understanding and forecasting CME geoeffectiveness are crucial for protecting infrastructure in space and ensuring the resilience of technological systems on Earth. Here we present GeoCME, a deep-learning framework designed to predict, deterministically or probabilistically, whether a CME event that arrives at Earth will cause a geomagnetic storm. A geomagnetic storm is defined as a disturbance of the Earth’s magnetosphere during which the minimum Dst index value is less than −50 nT. GeoCME is trained on observations from the instruments including LASCO C2, EIT, and MDI on board the Solar and Heliospheric Observatory (SOHO), focusing on a dataset that includes 136 halo/partial halo CMEs in Solar Cycle 23. Using ensemble and transfer learning techniques, GeoCME is capable of extracting features hidden in the SOHO observations and making predictions based on the learned features. Our experimental results demonstrate the good performance of GeoCME, achieving a Matthew’s correlation coefficient of 0.807 and a true skill statistics score of 0.714 when the tool is used as a deterministic prediction model. When the tool is used as a probabilistic forecasting model, it achieves a Brier score of 0.094 and a Brier skill score of 0.493. These results are promising, showing that the proposed GeoCME can help enhance our understanding of CME-triggered solar-terrestrial interactions. 
    more » « less
  5. Abstract In situ measurements from spacecraft typically provide a time series at a single location through coronal mass ejections (CMEs), and they have been one of the main methods to investigate CMEs. The CME properties derived from these in situ measurements are affected by temporal changes that occur as the CME passes over the spacecraft, such as radial expansion and aging, as well as spatial variations within a CME. This study uses multispacecraft measurements of the same CME at close separations to investigate both the spatial variability (how different a CME profile is when probed by two spacecraft close to each other) and the so-called aging effect (the effect of the time evolution on in situ properties). We compile a database of 19 events from the past 4 decades measured by two spacecraft with a radial separation of <0.2 au and an angular separation of <10°. We find that the average magnetic field strength measured by the two spacecraft differs by 18% of the typical average value, which highlights nonnegligible spatial or temporal variations. For one particular event, measurements taken by the two spacecraft allow us to quantify and significantly reduce the aging effect to estimate the asymmetry of the magnetic field strength profile. This study reveals that single-spacecraft time series near 1 au can be strongly affected by aging and that correcting for self-similar expansion does not capture the whole aging effect. 
    more » « less