skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Attempts at generating metathesis-active Fe(IV) and Co(IV) complexes via the reactions of (silox)2M(THF)2, [(silox)3M][Na(THF)2] (M = Fe, Co), and related species with propellanes and triphenylboron
Metathetical syntheses of (silox)2M(THF)2 (1-M, Fe, Co), [(silox)3M]Na(THF)2 (2-M, Fe, Co), and (silox)3Fe(THF) (3) are presented, as are X-ray structural studies of 1-Co, 2-Fe, and 2-Co. Exposure of these complexes to 1.1.1- propellane (111P, C5H6) and 1,3-dehydroadamantane (AdP), which are known progenitors of ROMP-active alkylidenes with ruthenium, failed to elicit similar reactivity. A total of 28 complexes were subjected to 111P in attempts to make “Fe(IV)” alkylidenes capable of some form of olefin metathesis with no success. At best, catalytic ring-opening to 3-exo-methylene cyclobutylidene was evidenced. The addition of triphenylboron as a Lewis acid failed to aid in metal complex formation of the propellanes, but an unusual rearrangement of AdP was noted. In addition, 2-Fe catalyzed the conversion of 111P to 3-exo-methylene cyclobutylidene, which added twice to Ph3B, affording a structurally characterized product, Ph(κ-CH=CMeCH2BPh  more » « less
Award ID(s):
1953884
PAR ID:
10338334
Author(s) / Creator(s):
Editor(s):
Parkin, Ged
Date Published:
Journal Name:
Polyhedron
Volume:
215
ISSN:
0277-5387
Page Range / eLocation ID:
115656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the synthesis and reactivity of a model of [Fe]-hydrogenase derived from an anthracene-based scaffold that includes the endogenous, organometallic acyl(methylene) donor. In comparison to other non-scaffolded acyl-containing complexes, the complex described herein retains molecularly well-defined chemistry upon addition of multiple equivalents of exogenous base. Clean deprotonation of the acyl(methylene) C–H bond with a phenolate base results in the formation of a dimeric motif that contains a new Fe–C(methine) bond resulting from coordination of the deprotonated methylene unit to an adjacent iron center. This effective second carbanion in the ligand framework was demonstrated to drive heterolytic H 2 activation across the Fe( ii ) center. However, this process results in reductive elimination and liberation of the ligand to extrude a lower-valent Fe–carbonyl complex. Through a series of isotopic labelling experiments, structural characterization (XRD, XAS), and spectroscopic characterization (IR, NMR, EXAFS), a mechanistic pathway is presented for H 2 /hydride-induced loss of the organometallic acyl unit ( i.e. pyCH 2 –CO → pyCH 3 +CO). The known reduced hydride species [HFe(CO) 4 ] − and [HFe 3 (CO) 11 ] − have been observed as products by 1 H/ 2 H NMR and IR spectroscopies, as well as independent syntheses of PNP[HFe(CO) 4 ]. The former species ( i.e. [HFe(CO) 4 ] − ) is deduced to be the actual hydride transfer agent in the hydride transfer reaction (nominally catalyzed by the title compound) to a biomimetic substrate ([ Tol Im](BAr F ) = fluorinated imidazolium as hydride acceptor). This work provides mechanistic insight into the reasons for lack of functional biomimetic behavior (hydride transfer) in acyl(methylene)pyridine based mimics of [Fe]-hydrogenase. 
    more » « less
  2. Three mononuclear metal complexes [M II (L-N 3 O 2 )(MeCN) 2 ][BPh 4 ] 2 (M = Fe, 1 ; Co, 2 ; Ni, 3 ) were isolated and structurally characterized. Magnetic studies revealed uniaxial magnetic anisotropy for 1 ( D = −17.1 cm −1 ) and 3 ( D = −14.3 cm −1 ) and easy-plane magnetic anisotropy for 2 ( D = +36.9 cm −1 ). Slow magnetic relaxation was observed for complexes 1 and 2 under an applied magnetic field, both of which are dominated by a Raman process. 
    more » « less
  3. Three routes are explored to the title halide/cyanide complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) 14 ) 3 P) ( 9c-X ; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (Δ H ‡ /Δ S ‡ (kcal mol −1 /eu −1 ) 5.9/−20.4 and 7.4/−23.9 for 9c-Cl and 9c-I from variable temperature 13 C NMR spectra). First, reactions of the known cationic complex trans -[Fe(CO) 2 (NO)(P((CH 2 ) 14 ) 3 P)] + BF 4 − and Bu 4 N + X − give 9c-Cl /- Br /- I /- CN (75–83%). Second, reactions of the acyclic complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH 2 ) 3 ) 2 and Grubbs’ catalyst afford the tris(cycloalkenes) trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH(CH 2 ) m ) 3 P) ( m /X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z / E isomers (24–41%). Third, similar reactions of trans -[Fe(CO) 2 (NO)(P((CH 2 ) m CHCH 2 ) 3 ) 2 ] + BF 4 − and Grubbs’ catalyst afford crude trans -[Fe(CO) 2 (NO)P((CH 2 ) m CHCH(CH 2 ) m ) 3 P)] + BF 4 − ( m = 6, 8). However, the CC hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl /- Br /- CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P–Fe–P axes, and without intermolecular impediments to rotation in the solid state. 
    more » « less
  4. Fischer–Tropsch conversion of syngas to hydrocarbons is proposed to begin with CO binding to the iron surface of the catalyst. CO adsorption on various iron facets of relevance to the Fischer–Tropsch process suggest that the Fe(111) surface is the most active for catalysis, and that CO bound to the penultimate layer of Fe atoms or the b-state is the resting state during catalysis. Notably, a μ-1,2 mode was discarded for the b-state due to a lack of exemplar molecular species and expectation that such a mode would have a higher energy infrared (IR) absorption than observed experimentally (viz. 1735–1860 cm–1). Here, we report the synthesis of a diiron(I/II) complex in which CO binds μ-1,2: (Fe(OTf))(Fe(THF)(μ-1,2-CO))L where L2– is a bis(β-diketiminate) cyclophane (1). Surprisingly, the observed νCO at 1763 cm–1 for 1 compares well with that reported for b-state. Electron paramagnetic resonance (EPR), Mössbauer, and density functional theory (DFT) results support a weakly coupled s = 3/2 iron(I) and s = 2 iron(II) pair. Reduction of 1 results in C–O cleavage and C–C bond formation to yield a ketenylidene (CCO) complex as a major product observed spectroscopically. 
    more » « less
  5. Cofacial Fe 2 , Co 2 , and Ni 2 complexes supported by a para -terphenyl diphosphine ligand were prepared. Central arene deplanarization and a μ 2 :(η 3 ,η 3 ) coordination mode suggest partial bisallyl character in the Fe 2 and Co 2 complexes. An oxidation induced shift in Fe 2 –arene binding highlights the non-innocent nature of the arene ligand. 
    more » « less