skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bias and Variance of Post-processing in Differential Privacy
Post-processing immunity is a fundamental property of differential privacy: it enables the application of arbitrary data-independent transformations to the results of differentially private outputs without affecting their privacy guarantees. When query outputs must satisfy domain constraints, post-processing can be used to project them back onto the feasibility region. Moreover, when the feasible region is convex, a widely adopted class of post-processing steps is also guaranteed to improve accuracy. Post-processing has been applied successfully in many applications including census data, energy systems, and mobility. However, its effects on the noise distribution is poorly understood: It is often argued that post-processing may introduce bias and increase variance. This paper takes a first step towards understanding the properties of post-processing. It considers the release of census data and examines, both empirically and theoretically, the behavior of a widely adopted class of post-processing functions.  more » « less
Award ID(s):
2133284
PAR ID:
10338420
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
35
Issue:
12
ISSN:
2374-3468
Page Range / eLocation ID:
11177-11184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Post-processing immunity is a fundamental property of differential privacy: it enables arbitrary data-independent transformations to differentially private outputs without affecting their privacy guarantees. Post-processing is routinely applied in data-release applications, including census data, which are then used to make allocations with substantial societal impacts. This paper shows that post-processing causes disparate impacts on individuals or groups and analyzes two critical settings: the release of differentially private datasets and the use of such private datasets for downstream decisions, such as the allocation of funds informed by US Census data. In the first setting, the paper proposes tight bounds on the unfairness of traditional post-processing mechanisms, giving a unique tool to decision-makers to quantify the disparate impacts introduced by their release. In the second setting, this paper proposes a novel post-processing mechanism that is (approximately) optimal under different fairness metrics, either reducing fairness issues substantially or reducing the cost of privacy. The theoretical analysis is complemented with numerical simulations on Census data. 
    more » « less
  2. Background: The 2020 US Census will use a novel approach to disclosure avoidance to protect respondents’ data, called TopDown. This TopDown algorithm was applied to the 2018 end-to-end (E2E) test of the decennial census. The computer code used for this test as well as accompanying exposition has recently been released publicly by the Census Bureau. Methods: We used the available code and data to better understand the error introduced by the E2E disclosure avoidance system when Census Bureau applied it to 1940 census data and we developed an empirical measure of privacy loss to compare the error and privacy of the new approach to that of a (non-differentially private) simple-random-sampling approach to protecting privacy. Results: We found that the empirical privacy loss of TopDown is substantially smaller than the theoretical guarantee for all privacy loss budgets we examined. When run on the 1940 census data, TopDown with a privacy budget of 1.0 was similar in error and privacy loss to that of a simple random sample of 50% of the US population. When run with a privacy budget of 4.0, it was similar in error and privacy loss of a 90% sample. Conclusions: This work fits into the beginning of a discussion on how to best balance privacy and accuracy in decennial census data collection, and there is a need for continued discussion. 
    more » « less
  3. We propose new differential privacy solutions for when external invariants and integer constraints are simultaneously enforced on the data product. These requirements arise in real world applications of private data curation, including the public release of the 2020 U.S. Decennial Census. They pose a great challenge to the production of provably private data products with adequate statistical usability. We propose integer subspace differential privacy to rigorously articulate the privacy guarantee when data products maintain both the invariants and integer characteristics, and demonstrate the composition and post-processing properties of our proposal. To address the challenge of sampling from a potentially highly restricted discrete space, we devise a pair of unbiased additive mechanisms, the generalized Laplace and the generalized Gaussian mechanisms, by solving the Diophantine equations as defined by the constraints. The proposed mechanisms have good accuracy, with errors exhibiting sub-exponential and sub-Gaussian tail probabilities respectively. To implement our proposal, we design an MCMC algorithm and supply empirical convergence assessment using estimated upper bounds on the total variation distance via L-lag coupling. We demonstrate the efficacy of our proposal with applications to a synthetic problem with intersecting invariants, a sensitive contingency table with known margins, and the 2010 Census county-level demonstration data with mandated fixed state population totals. 
    more » « less
  4. Mobile and web apps are increasingly relying on the data generated or provided by users such as from their uploaded documents and images. Unfortunately, those apps may raise significant user privacy concerns. Specifically, to train or adapt their models for accurately processing huge amounts of data continuously collected from millions of app users, app or service providers have widely adopted the approach of crowdsourcing for recruiting crowd workers to manually annotate or transcribe the sampled ever-changing user data. However, when users' data are uploaded through apps and then become widely accessible to hundreds of thousands of anonymous crowd workers, many human-in-the-loop related privacy questions arise concerning both the app user community and the crowd worker community. In this paper, we propose to investigate the privacy risks brought by this significant trend of large-scale crowd-powered processing of app users' data generated in their daily activities. We consider the representative case of receipt scanning apps that have millions of users, and focus on the corresponding receipt transcription tasks that appear popularly on crowdsourcing platforms. We design and conduct an app user survey study (n=108) to explore how app users perceive privacy in the context of using receipt scanning apps. We also design and conduct a crowd worker survey study (n=102) to explore crowd workers' experiences on receipt and other types of transcription tasks as well as their attitudes towards such tasks. Overall, we found that most app users and crowd workers expressed strong concerns about the potential privacy risks to receipt owners, and they also had a very high level of agreement with the need for protecting receipt owners' privacy. Our work provides insights on app users' potential privacy risks in crowdsourcing, and highlights the need and challenges for protecting third party users' privacy on crowdsourcing platforms. We have responsibly disclosed our findings to the related crowdsourcing platform and app providers. 
    more » « less
  5. Many data applications have certain invariant constraints due to practical needs. Data curators who employ differential privacy need to respect such constraints on the sanitized data product as a primary utility requirement. Invariants challenge the formulation, implementation, and interpretation of privacy guarantees. We propose subspace differential privacy, to honestly characterize the dependence of the sanitized output on confidential aspects of the data. We discuss two design frameworks that convert well-known differentially private mechanisms, such as the Gaussian and the Laplace mechanisms, to subspace differentially private ones that respect the invariants specified by the curator. For linear queries, we discuss the design of near-optimal mechanisms that minimize the mean squared error. Subspace differentially private mechanisms rid the need for post-processing due to invariants, preserve transparency and statistical intelligibility of the output, and can be suitable for distributed implementation. We showcase the proposed mechanisms on the 2020 Census Disclosure Avoidance demonstration data, and a spatio-temporal dataset of mobile access point connections on a large university campus. 
    more » « less