Abstract The gas-phase velocity dispersions in disk galaxies, which trace turbulence in the interstellar medium, are observed to increase with lookback time. However, the mechanisms that set this rise in turbulence are observationally poorly constrained. To address this, we combine kiloparsec-scale Atacama Large Millimeter/submillimeter Array observations of CO(3−2) and CO(4−3) with Hubble Space Telescope observations of Hαto characterize the molecular gas and star formation properties of seven local analogs of main-sequence galaxies atz∼ 1–2, drawn from the DYNAMO sample. Investigating the “molecular gas main sequence” on kiloparsec scales, we find that galaxies in our sample are more gas-rich than local star-forming galaxies at all disk positions. We measure beam-smearing-corrected molecular gas velocity dispersions and relate them to the molecular gas and star formation rate surface densities. Despite being relatively nearby (z∼ 0.1), DYNAMO galaxies exhibit high velocity dispersions and gas and star formation rate surface densities throughout their disks, when compared to local star-forming samples. Comparing these measurements to predictions from star formation theory, we find very good agreements with the latest feedback-regulated star formation models. However, we find that theories that combine dissipation of gravitational energy from radial gas transport with feedback overestimate the observed molecular gas velocity dispersions.
more »
« less
A Search for Correlations between Turbulence and Star Formation in THINGS Galaxies
Abstract The spatial range for feedback from star formation varies from molecular cloud disruption on parsec scales to supershells and disk blowout on kiloparsec scales. The relative amounts of energy and momentum given to these scales are important for understanding the termination of star formation in any one region and the origin of interstellar turbulence and disk stability in galaxies as a whole. Here, we measure, for 11 THINGS galaxies, the excess kinetic energy, velocity dispersion, and surface density of H i gas associated with regions of excess star formation, where the excess is determined from the difference between the observed local value and the azimuthal average. We find small decreases in the excess kinetic energy and velocity dispersion in regions of excess star formation rate density, suggesting that most of the feedback energy does not go into local H i motion. Most likely, it disrupts molecular clouds and dissipates rapidly at high gas density. Some could also be distributed over larger regions, filling in spaces between the peaks of star formation and contributing to other energy sources from self-gravity and spiral arm shocks.
more »
« less
- Award ID(s):
- 1852478
- PAR ID:
- 10338467
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 928
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 143
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Sloan Digital Sky Survey MaNGA program has now obtained integral field spectroscopy for over 10,000 galaxies in the nearby universe. We use the final MaNGA data release DR17 to study the correlation between ionized gas velocity dispersion and galactic star formation rate, finding a tight correlation in whichσHαfrom galactic Hiiregions increases significantly from ∼18–30 km s−1, broadly in keeping with previous studies. In contrast,σHαfrom diffuse ionized gas increases more rapidly from 20–60 km s−1. Using the statistical power of MaNGA, we investigate these correlations in greater detail using multiple emission lines and determine that the observed correlation ofσHαwith local star formation rate surface density is driven primarily by the global relation of increasing velocity dispersion at higher total star formation rate, as are apparent correlations with stellar mass. Assuming Hiiregion models consistent with our finding thatσ[OIII]<σHα<σ[O I], we estimate the velocity dispersion of the molecular gas in which the individual Hiiregions are embedded, finding valuesσMol= 5–30 km s−1consistent with ALMA observations in a similar mass range. Finally, we use variations in the relation with inclination and disk azimuthal angle to constrain the velocity dispersion ellipsoid of the ionized gasσz/σr= 0.84 ± 0.03 andσϕ/σr= 0.91 ± 0.03, similar to that of young stars in the Galactic disk. Our results are most consistent with the theoretical models in which turbulence in modern galactic disks is driven primarily by star formation feedback.more » « less
-
Abstract Understanding the interplay of stellar feedback and turbulence in the interstellar medium (ISM) is essential to modeling the evolution of galaxies. To determine the timescales over which stellar feedback drives turbulence in the ISM, we performed a spatially resolved, multiwavelength study of the nearby star-forming dwarf galaxy UGC 4305. As indicators of turbulence on local scales (400 pc), we utilized ionized gas velocity dispersion derived from IFU Hαobservations and atomic gas velocity dispersion and energy surface densities derived from Hisynthesis observations with the Very Large Array. These indicators of turbulence were tested against star formation histories over the past 560 Myr derived from color–magnitude diagrams using Spearman’s rank correlation coefficient. The strongest correlation identified at the 400 pc scale is between measures of Hiturbulence and star formation 70–140 Myr ago. We repeated our analysis of UGC 4305's current turbulence and past star formation activity on multiple physical scales (∼560 and 800 pc) to determine whether there are indications of changes in the correlation timescale with changes to the physical scale. No notable correlations were found at larger physical scales, emphasizing the importance of analyzing star formation-driven turbulence as a local phenomenon.more » « less
-
Abstract Stellar feedback is fundamental to the modeling of galaxy evolution, as it drives turbulence and outflows in galaxies. Understanding the timescales involved are critical for constraining the impact of stellar feedback on the interstellar medium. We analyzed the resolved star formation histories along with the spatial distribution and kinematics of the atomic and ionized gas of four nearby star-forming dwarf galaxies (NGC 4068, NGC 4163, NGC 6789, and UGC 9128) to determine the timescales over which stellar feedback drives turbulence. The four galaxies are within 5 Mpc and have a range of properties including current star formation rates of 0.0005–0.01M⊙yr−1, log(M*/M⊙) between 7.2 and 8.2, and log(MHi/M⊙) between 7.2 and 8.3. Their color–magnitude diagram derived star formation histories over the past 500 Myr were compared to their atomic and ionized gas velocity dispersion and Hienergy surface densities as indicators of turbulence. The Spearman’s rank correlation coefficient was used to identify any correlations between their current turbulence and their past star formation activity on local scales (∼400 pc). The strongest correlation found was between the Hiturbulence measures and the star formation rate 100–200 Myr ago. This suggests a coupling between the star formation activity and atomic gas on this timescale. No strong correlation between the ionized gas velocity dispersion and the star formation activity between 5 and 500 Myr ago was found. The sample and analysis are the foundation of a larger program aimed at understanding the timescales over which stellar feedback drives turbulence.more » « less
-
Abstract Determining how the galactic environment, especially the high gas densities and complex dynamics in bar-fed galaxy centers, alters the star formation efficiency (SFE) of molecular gas is critical to understanding galaxy evolution. However, these same physical or dynamical effects also alter the emissivity properties of CO, leading to variations in the CO-to-H2conversion factor (αCO) that impact the assessment of the gas column densities and thus of the SFE. To address such issues, we investigate the dependence ofαCOon the local CO velocity dispersion at 150 pc scales using a new set of dust-basedαCOmeasurements and propose a newαCOprescription that accounts for CO emissivity variations across galaxies. Based on this prescription, we estimate the SFE in a sample of 65 galaxies from the PHANGS–Atacama Large Millimeter/submillimeter Array survey. We find increasing SFE toward high-surface-density regions like galaxy centers, while using a constant or metallicity-basedαCOresults in a more homogeneous SFE throughout the centers and disks. Our prescription further reveals a mean molecular gas depletion time of 700 Myr in the centers of barred galaxies, which is overall three to four times shorter than in nonbarred galaxy centers or the disks. Across the galaxy disks, the depletion time is consistently around 2–3 Gyr, regardless of the choice ofαCOprescription. All together, our results suggest that the high level of star formation activity in barred centers is not simply due to an increased amount of molecular gas, but also to an enhanced SFE compared to nonbarred centers or disk regions.more » « less
An official website of the United States government

