skip to main content

Title: Characterization of Ag/AgCl Dry Electrodes for Wearable Electrophysiological Sensing
With the rising need for on-body biometric sensing, the development of wearable electrophysiological sensors has been faster than ever. Surface electrodes placed on the skin need to be robust in order to measure biopotentials from the body reliably and comfortable for extended wearability. The electrical stability of nonpolarizable silver/silver chloride (Ag/AgCl) and its low-cost, commercial production have made these electrodes ubiquitous health sensors in the clinical environment, where wet gels and long wires are accommodated by patient immobility. However, smaller, dry electrodes with wireless acquisition are essential for truly wearable, continuous health sensing. Currently, techniques for the robust fabrication of custom Ag/AgCl electrodes are lacking. Here, we present three methods for the fabrication of Ag/AgCl electrodes: oxidizing Ag in a chlorine solution, electroplating Ag, and curing Ag/AgCl ink. Each of these methods is then used to create three different electrode shapes for wearable application. Bench-top and on-body evaluation of the electrode techniques was achieved by electrochemical impedance spectroscopy (EIS), calculation of variance in electrocardiogram (ECG) measurements, and analysis of auditory steady-state response (ASSR) measurement. Microstructures produced on the electrode by each fabrication technique were also investigated with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The custom Ag/AgCl electrodes more » were found to be efficient in comparison with standard, commercial Ag/AgCl wet electrodes across all three of our presented techniques, with Ag/AgCl ink shown to be the better out of the three in bench-top and biometric recordings. « less
Authors:
; ; ; ;
Award ID(s):
1719130 1935860
Publication Date:
NSF-PAR ID:
10338493
Journal Name:
Frontiers in Electronics
Volume:
2
ISSN:
2673-5857
Sponsoring Org:
National Science Foundation
More Like this
  1. Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior tomore »modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications.« less
  2. There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creatingmore »interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis.« less
  3. Abstract

    The recent need for remote health wellness monitoring has led to the extensive use of wearable sensors. Owing to their increased use, these sensors are required to exhibit both functionality and safety to the user. A major component in the fabrication of these sensors and their associated circuitry is the use of metallic/organic conductive inks. However, very less is known about the interfacial and molecular interactions of these inks with biological matter as they can result in an inflammatory reaction to the user. Significant efforts are thus needed to explore and improve the bio-acceptability of such conductive ink-based wearable sensors. The present study investigates the biocompatibility of encapsulated and non-encapsulated wearable electrochemical sensors used for sensing uric acid as a biomarker for wound healing fabricated using screen-printing technique. Ionic release of metallic ions was investigated first to understand the susceptibility of the conductive inks towards ionic leaching when in contact with a fluid. Time-lapse investigation using ICPS (inductive couple plasma spectroscopy) shows a high concentration (607.31 ppb) of leached silver (Ag+) ions from the non-encapsulated sensors. The cell viability data suggests a 2.5-fold improvement in the sensor biocompatibility for an encapsulated sensor. While the carbon ink shows negligible effect onmore »cell viability, the silver ink elicits significant decrease (< 50%) in cell viability at concentrations higher than 2 mg ml-1. The toxicity pathway of these sensors was further determined to be through the generation of reactive oxygen species resulting in over 20% apoptotic cell death. Our results show that the lower biocompatibility of the non-encapsulated sensor attributes to the higher leaching of Ag+ions from the printed inks which elicits several different inflammatory pathways. This work highlights the importance biocompatibility evaluation of the material used in sensor fabrication to develop safe and sustainable sensors for long-term applications.

    « less
  4. Abstract Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H 2 O 2 ). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes.more »These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance.« less
  5. Developing low-cost and multiplexing electrochemical (EC) devices for bioassay is imperative. Herein, a polymer-based EC device, named EC 6-well plate, was proposed and fabricated using a non-photolithography method. Polyethylene terephthalate glycol (PETG) was used as a substrate and laser-cut polyester (PET) film was used as a mask for patterning the electrodes. The diameter of the working electrode (WE) was 900 μ m, and each WE-modifying step only requires 1 μ l of reagent. Acrylic mold with wells (60 μ l) was bonded to the PETG substrate. Miniaturization of reference electrodes (RE) was discussed. The solid-state Ag/AgCl RE-based three-electrode system, the Au three-electrode system (3E), and Au two-electrode system (2E) were prepared and employed to develop an immunosensor for toxin B detection. Differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) were applied to test the stability of the EC immunosensor. The solid-state Ag/AgCl RE-based system showed a standard deviation of open circuit potential (OCP) of 4.6 mV. The 3E system and 2E system showed the standard deviations of OCP of 0.0026 mV and 0.32 mV, respectively. It revealed that the EC 6-well plate with the 3E system is excellent for developing an EC immunosensor.