skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ants disperse seeds farther in habitat patches with corridors
Abstract Habitat fragmentation impacts ecosystems worldwide through habitat loss, reduced connectivity, and edge effects. Yet, these landscape factors are often confounded, leaving much to be investigated about their relative effects, especially on species interactions. In a landscape experiment, we investigated the consequences of connectivity and edge effects for seed dispersal by ants. We found that ants dispersed seeds farther in habitat patches connected by corridors, but only in patch centers. We did not see an effect on the total number of seeds moved or the rate ants detected seeds. Furthermore, we did not see any differences in ant community composition across patch types, suggesting that shifts in ant behavior or other factors increased ant seed dispersal in patches connected by corridors. Long‐distance seed dispersal by ants that requires an accumulation of short‐distance dispersal events over generations may be an underappreciated mechanism through which corridors increase plant diversity.  more » « less
Award ID(s):
1913501 1912729
PAR ID:
10392851
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
13
Issue:
12
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Habitat loss and fragmentation are leading causes of species declines, driven in part by reduced dispersal. Isolating the effects of fragmentation on dispersal, however, is daunting because the consequences of fragmentation are typically intertwined, such as reduced connectivity and increased prevalence of edge effects. We used a large‐scale landscape experiment to separate consequences of fragmentation on seed dispersal, considering both distance and direction of local dispersal. We evaluated seed dispersal for five wind‐ or gravity‐dispersed, herbaceous plant species that were planted at different distances from habitat edges, within fragments that varied in their connectivity and shape (edge‐to‐area ratio). Dispersal distance was affected by proximity and direction relative to the nearest edge. For four of five species, dispersal distances were greater further from habitat edges and when seeds dispersed in the direction of the nearest edge. Connectivity and patch edge‐to‐area ratio had minimal effects on local dispersal. Our findings illustrate how some, but not all, landscape changes associated with fragmentation can affect the key population process of seed dispersal. 
    more » « less
  2. Abstract Although corridors are frequently regarded as a way to mitigate the negative effects of habitat fragmentation, concerns persist that corridors may facilitate the spread of invasive species to the detriment of native species.The invasive fire ant,Solenopsis invicta,has two social forms. The polygyne form has limited dispersal abilities relative to the monogyne form. Our previous work in a large‐scale corridor experiment showed that in landscapes dominated by the polygyne form, fire ant density was higher and native ant species richness was lower in habitat patches connected by corridors than in unconnected patches.We expected that these observed corridor effects would be transient, that is, that fire ant density and native ant species richness differences between connected and unconnected patches would diminish over time as fire ants eventually fully established within patches. We tested this prediction by resampling the three landscapes dominated by polygyne fire ants 6 to 11 years after our original study.Differences in fire ant density between connected and unconnected habitat patches in these landscapes decreased, as expected. Differences in native ant species richness were variable but lowest in the last 2 years of sampling.These findings support our prediction of transient corridor effects on this invasive ant and stress the importance of temporal dynamics in assessing population and community impacts of habitat connectivity. 
    more » « less
  3. ABSTRACT Animal behavior is an important component of individual, population, and community responses to anthropogenic habitat alteration. For example, antipredator behavior (e.g., vigilance) and animal movement behavior may both be important behavioral responses to the increased density of habitat edges and changes in patch connectivity that characterize highly modified habitats. Importantly, edge density and connectivity might interact, and this interaction is likely to mediate animal behavior: linear, edge‐rich landscape features often provide structural connectivity between patches, but the functional connectedness of patches for animal use could depend upon how edge density modifies animal vigilance and movement. Using remote cameras in large‐scale experimental landscapes that manipulate edge density (high‐ vs. low‐density edges) and patch connectivity (isolated or connected patches), we examined the effects of edge density and connectivity on the antipredator behavior and movement behavior of white‐tailed deer (Odocoileus virginianus). Deer vigilance was 1.38 times greater near high‐density edges compared to low‐density edges, regardless of whether patches were connected or isolated. Deer were also more likely to move parallel to connected high‐density edges than all other edge types, suggesting that connectivity promotes movement along high‐density edges. These results suggest that increases in edge density that accompany human fragmentation of existing habitats may give rise to large‐scale changes in the antipredator behavior of deer. These results also suggest that conservation strategies that simultaneously manipulate edge density and connectivity (i.e., habitat corridors) may have multiple effects on different aspects of deer behavior: linear habitat corridors were areas of high vigilance, but also areas where deer movement behavior implied increased movement along the habitat edge. 
    more » « less
  4. Abstract Plant secondary metabolites are key mechanistic drivers of species interactions. These metabolites have primarily been studied for their role in defense, but they can also have important consequences for mutualisms, including seed dispersal. Although the primary function of fleshy fruits is to attract seed‐dispersing animals, fruits often contain complex mixtures of toxic or deterrent secondary metabolites that can reduce the quantity or quality of seed dispersal mutualisms. Furthermore, because seeds are often dispersed across multiple stages by several dispersers, the net consequences of fruit secondary metabolites for the effectiveness of seed dispersal and ultimately plant fitness are poorly understood. Here, we tested the effects of amides, nitrogen‐based defensive compounds common in fruits of the neotropical plant genusPiper(Piperaceae), on seed dispersal effectiveness (SDE) by ants, which are common secondary seed dispersers. We experimentally added amide extracts toPiperfruits both in the field and lab, finding that amides reduced the quantity of secondary seed dispersal by reducing ant recruitment (87%) and fruit removal rates (58% and 66% in the field and lab, respectively). Moreover, amides not only reduced dispersal quantity but also altered seed dispersal quality by shifting the community composition of recruiting ants (notably by reducing the recruitment of the most effective disperser by 90% but having no detectable effect on the recruitment of a cheater species that removes fruit pulp without dispersing seeds). Although amides did not affect the distance ants initially carried seeds, they altered the quality of seed dispersal by reducing the likelihood of ants cleaning seeds (67%) and increasing their likelihood of ants redispersing seeds outside of the nest (200%). Overall, these results demonstrate that secondary metabolites can alter the effectiveness of plant mutualisms, by both reducing mutualism quantity and altering mutualism quality through multiple mechanisms. These findings present a critical step in understanding the factors mediating the outcomes of seed dispersal and, more broadly, demonstrate the importance of considering how defensive secondary metabolites influence the outcomes of mutualisms surrounding plants. 
    more » « less
  5. Abstract Habitat fragmentation resulting in habitat loss and increased isolation is a dominant driver of global species declines. Habitat isolation and connectivity vary across scales, and understanding how connectivity affects biodiversity can be challenging because the relevant scale depends on the taxa involved. A multiscale analysis can provide insight in biodiversity patterns across spatial scale when information on dispersal ability is not available, in particular for community‐level studies focusing on multiple taxa. In this study, we examine the relationship between arthropod diversity, patch area, and connectivity using a multiscale approach. We make use of a natural experiment on Hawai‘i Island, where historic volcanic activity has transformed contiguous native forests to lava matrix and discrete forest patches. This landscape of patches has persisted for 150 yr, and we selected 10,000 ha consisting of 863 patches to analyze landscape connectivity using a graph theory approach. We collected arthropod samples fromMetrosideros polymorpha tree canopies in 34 forest patches during multiple years. We analyzed the relationship of arthropod diversity with area, as well as with connectivity across increasing scales, or dispersal threshold distances. In contrast to well‐established ecological theory as well as prior work on birds and fungi in this system, we did not find support for a canonical species–area relationship. Next, we calculated connectivity across spatial scales and found lower Shannon diversity with higher connectivity at small scales, but no effect at increased dispersal threshold distances. We examined the landscape structure and found all habitat patches connected into three subnetworks at a 350 m threshold distance. All patches were connected at 700 m threshold distance, indicating structural dispersal limitation only at small scales. Our findings suggest that canopy arthropods are not dispersal limited at scales shown to impact both soil fungi and birds in this system. Instead, Hawaiian canopy arthropods may perceive the landscape as a connected area where discrete forest patches and the early‐successional matrix contribute resources that vary spatially with regard to habitat quality. We argue for the utility of multiscale approaches, and the importance of examining maintenance of biodiversity in fragmented landscapes that persist for hundreds of years. 
    more » « less