skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Altering the tuning parameter settings of a commercial powered prosthetic foot to increase power during push-off may not reduce collisional work in the intact limb during gait
Award ID(s):
1734416
PAR ID:
10338606
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Prosthetics & Orthotics International
Volume:
45
Issue:
5
ISSN:
0309-3646
Page Range / eLocation ID:
410 to 416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article sets the near-surface meteorological conditions during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition in the context of the interannual variability and extremes within the past 4 decades. Hourly ERA5 reanalysis data for the Polarstern trajectory for 1979–2020 are analyzed. The conditions were relatively normal given that they were mostly within the interquartile range of the preceding 4 decades. Nevertheless, some anomalous and even record-breaking conditions did occur, particularly during synoptic events. Extreme cases of warm, moist air transported from the northern North Atlantic or northwestern Siberia into the Arctic were identified from late fall until early spring. Daily temperature and total column water vapor were classified as being among the top-ranking warmest/wettest days or even record-breaking based on the full record. Associated with this, the longwave radiative fluxes at the surface were extremely anomalous for these winter cases. The winter and spring period was characterized by more frequent storm events and median cyclone intensity ranking in the top 25th percentile of the full record. During summer, near melting point conditions were more than a month longer than usual, and the July and August 2020 mean conditions were the all-time warmest and wettest. These record conditions near the Polarstern were embedded in large positive temperature and moisture anomalies over the whole central Arctic. In contrast, unusually cold conditions occurred during the beginning of November 2019 and in early March 2020, related to the Arctic Oscillation. In March, this was linked with anomalously strong and persistent northerly winds associated with frequent cyclone occurrence to the southeast of the Polarstern. 
    more » « less
  2. null (Ed.)
    Communities often unite during a crisis, though some cope by ascribing blame or stigmas to those who might be linked to distressing life events. In a preregistered two-wave survey, we evaluated the dehumanization of Asians and Asian Americans during the COVID-19 pandemic. Our first wave (March 26–April 2, 2020; N = 917) revealed dehumanization was prevalent, between 6.1% and 39% of our sample depending on measurement. Compared to non-dehumanizers, people who dehumanized also perceived the virus as less risky to human health and caused less severe consequences for infected people. They were more likely to be ideologically Conservative and believe in conspiracy theories about the virus. We largely replicated the results 1 month later in our second wave (May 6–May 13, 2020; N = 723). Together, many Americans dehumanize Asians and Asian Americans during the COVID-19 pandemic with related perceptions that the virus is less problematic. Implications and applications for dehumanization theory are discussed. 
    more » « less
  3. As continents break apart, the dominant mechanism of extension transitions from faulting and lithospheric stretching to magma intrusion and oceanic crust formation in a new ocean basin. A common feature of this evolution preserved at magmatic rifted margins worldwide are voluminous lava flows that erupted close to sea level during the final stages of development of the continent-ocean transition (COT). The mechanisms responsible for the generation of the melts that contribute to these voluminous flows, the so-called seaward dipping reflectors (SDR), and their significance in the context of COT development, are relatively poorly understood; they lie deep below post-rift strata along submarine rifted margins where they cannot be studied directly. Extensive coring of the Afar Stratoid Series - an areally-extensive sequence of Pliocene-aged basalts and intercalated sediments that lie atop the developing COT in the sub-aerial Afar Depression, northern Ethiopia - offers fresh scope to address this issue. We present a numerical model simulating the formation of enriched metasomes within the continental lithospheric mantle by the passage of magmas resembling modern axial basalts. Thermal destabilization of the metasome, caused by plate stretching, initiates melt formation within the metasome. These melts, when mixed with a depleted lithospheric mantle component, closely match the range of compositions of the Afar Stratoid Series lavas in this study. Metasomatic re-enrichment and subsequent melting of the lithospheric mantle during the COT may contribute to further plate thinning. These results demonstrate a novel mechanism by which large-volume flows may be erupted during the COT. 
    more » « less
  4. Abstract Vascular pericytes provide critical contributions to the formation and integrity of the blood vessel wall within the microcirculation. Pericytes maintain vascular stability and homeostasis by promoting endothelial cell junctions and depositing extracellular matrix (ECM) components within the vascular basement membrane, among other vital functions. As their importance in sustaining microvessel health within various tissues and organs continues to emerge, so does their role in a number of pathological conditions including cancer, diabetic retinopathy, and neurological disorders. Here, we review vascular pericyte contributions to the development and remodeling of the microcirculation, with a focus on the local microenvironment during these processes. We discuss observations of their earliest involvement in vascular development and essential cues for their recruitment to the remodeling endothelium. Pericyte involvement in the angiogenic sprouting context is also considered with specific attention to crosstalk with endothelial cells such as through signaling regulation and ECM deposition. We also address specific aspects of the collective cell migration and dynamic interactions between pericytes and endothelial cells during angiogenic sprouting. Lastly, we discuss pericyte contributions to mechanisms underlying the transition from active vessel remodeling to the maturation and quiescence phase of vascular development. 
    more » « less
  5. Abstract The history of tropospheric O3, an important atmospheric oxidant, is poorly constrained because of uncertainties in its historical budget and a dearth of independent records. Here, we estimate the mean tropospheric O3burden during the Last Interglacial period (LIG; 115 to 130 thousand years ago) using a record of the clumped isotopic composition of O2(i.e., Δ36values) preserved in Antarctic ice. The measured LIG Δ36value is 0.03 ± 0.02‰ (95% CI) higher than the late pre‐industrial Holocene (PI; 1,590–1,850 CE) value and corresponds to a modeled 9% reduction in LIG tropospheric O3burden (95% CI: 3%–15%), caused in part by a substantial reduction in biomass burning emissions during the LIG relative to the PI. These results are consistent with the hypothesis that late‐Pleistocene megafaunal extinctions caused woody and grassy fuels to accumulate on land, leading to enhanced biomass burning in the preindustrial Holocene. 
    more » « less