skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A viscoelastic model for seismic attenuation using fractal mechanical networks
SUMMARY Seismic attenuation (quantified by the quality factor Q) has a significant impact on the seismic waveforms, especially in the fluid-saturated rocks. This dissipative process can be phenomenologically represented by viscoelastic models. Previous seismological studies show that the Q value of Earth media exhibits a nearly frequency-independent behaviour (often referred to as constant-Q in literature) in the seismic frequency range. Such attenuation can be described by the mathematical Kjartansson constant-Q model, which lacks of a physical representation in the viscoelastic sense. Inspired by the fractal nature of the pore fluid distribution in patchy-saturated rocks, here we propose two fractal mechanical network (FMN) models, that is, a fractal tree model and a quasi-fractal ladder model, to phenomenologically represent the frequency-independent Q behaviour. As with the classic viscoelastic models, the FMN models are composed of mechanical elements (spring and dashpots) arranged in different hierarchical patterns. A particular parametrization of each model can produce the same complex modulus as in the Kjartansson model, which leads to the constant-Q. Applying the theory to several typical rock samples, we find that the seismic attenuation signature of these rocks can be accurately represented by either one of the FMN models. Besides, we demonstrate that the ladder model in particular exhibits the realistic multiscale fractal structure of the saturated rocks. Therefore, the FMN models as a proxy could provide a new way to estimate the microscopic rock structure property from macroscopic seismic attenuation observation.  more » « less
Award ID(s):
1919650
PAR ID:
10338647
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
224
Issue:
3
ISSN:
0956-540X
Page Range / eLocation ID:
1658 to 1669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    SUMMARY Seismic attenuation is measured from a swarm of 50 earthquakes in Kīlauea volcano in 2018, associated with caldera collapse. The traverse extends at nearly constant azimuth to the saddle between Mauna Loa and Mauna Kea, continuing to Maui beneath the distal flanks of three dormant volcanos. From Maui the traverse then extends seaward to the Aloha Cabled Observatory (ACO) on the seafloor north of O‘ahu. The effective attenuation is measured with respect to an $${\omega ^{ - 2}}$$ earthquake source model. Frequency dependent $${Q_P}$$ and $${Q_S}$$ are derived. The initial path is shallow and uphill, the path to Maui propagates at mid-crustal depths, and the path to ACO extends through oceanic crust. The observations of $${Q_P} \le {Q_S}$$ over each traverse are modelled as bulk attenuation $${Q_K}$$. Several attenuation processes are observed, including $${Q_\mu }$$, $${Q_K}$$, $$Q\sim f$$, constant Q and scattering. The observation of bulk attenuation is ascribed to contrasting physical properties between basalt and water saturated vesicles. The ratio of Q values between shallow and mid-crustal propagation is used to derive an activation energy E* for the undetermined shear attenuation mechanism. A Debye relaxation peak is fit to the $${Q_S}( f )$$ and $${Q_K}( f )$$ observed for the mid-crustal pathway. A prior high-frequency attenuation study near Wake Island compares well with this Hawaiian Q data set, which in general shows lower values of Q than observed for Wake. 
    more » « less
  2. Abstract Subduction zone accretionary prisms are commonly modeled as elastic structures where permanent deformation is accommodated by faulting and folding of otherwise elastic materials, yet accretionary prisms may exhibit other deformation styles over relatively short time scales. In this study, we use 6.5‐year (2014–2021) Sentinel‐1 interferometric synthetic aperture radar (InSAR) time‐series of post‐seismic deformation in the Makran accretionary prism of southeast Pakistan to characterize non‐linear viscoelastic deformation within an active accretionary prism on short timescales (months to years). We constructed a series of 3‐D finite‐element models of the Makran subduction zone, including an accretionary prism, and constrained the elastic thickness of the upper wedge and the flow‐law parameters (power‐law exponent, activation enthalpy, and pre‐exponential constant) of the lower wedge through forward model fits to the InSAR time‐series. Our results show that the prism is elastically thin (8–12 km) and the non‐linear viscoelastic relaxation of the deep portions of the prism alone can sufficiently explain the post‐seismic surface deformation. Our best fitting flow‐law parameters (n = 3.76 ± 0.39,Q = 82.2 ± 37.73 kJ mol−1, andA = 10−3.36±4.69) are consistent with triggering of low temperature dislocation creep within fluid‐saturated siliciclastic rocks. We believe that the fluids necessary for this weakening originate from sedimentary underplating and/or the presence the hydrocarbons. The presence of power‐law rheology within the lower wedge impacts the estimated plate coupling and the stress state in the subduction system, with respect to the conventional elastic wedge model, and hence should to be considered in future earthquake cycle models. 
    more » « less
  3. Abstract Seismicity in the Los Angeles metropolitan area has been primarily attributed to the regional stress loading. Below the urban areas, earthquake sequences have occurred over time showing migration off the faults and providing evidence that secondary processes may be involved in their evolution. Combining high-frequency seismic attenuation with other geophysical observations is a powerful tool for understanding which Earth properties distinguish regions with ongoing seismicity. We develop the first high-resolution 3D seismic attenuation models across the region east of downtown Los Angeles using 5,600 three-component seismograms from local earthquakes recorded by a dense seismic array. We present frequency-dependent peak delay and coda-attenuation tomography as proxies for seismic scattering and absorption, respectively. The scattering models show high sensitivity to the seismicity along some of the major faults, such as the Cucamonga fault and the San Jacinto fault zone, while a channel of low scattering in the basement extends from near the San Andreas fault westward. In the vicinity of the Fontana seismic sequence, high absorption, low scattering, and seismicity migration across a fault network suggest fluid-driven processes. Our attenuation and fault network imaging characterize near-fault zones and rock-fluid properties beneath the study area for future improvements in seismic hazard evaluation. 
    more » « less
  4. Abstract Dislocation‐based dissipation mechanisms potentially control the viscoelastic response of Earth's upper mantle across a variety of geodynamic contexts, including glacial isostatic adjustment, postseismic creep, and seismic‐wave attenuation. However, there is no consensus on which dislocation‐based, microphysical process controls the viscoelastic behavior of the upper mantle. Although both intergranular (plastic anisotropy) and intragranular (backstress) mechanisms have been proposed, there is currently insufficient laboratory data to discriminate between those mechanisms. Here, we present the results of forced‐oscillation experiments in a deformation‐DIA apparatus at confining pressures of 3–7 GPa and temperatures of 298–1370 K. Our experiments tested the viscoelastic response of polycrystalline olivine—the main constituent of the upper mantle—at stress amplitudes from 70 to 2,800 MPa. Mechanical data are complemented by microstructural analyses of grain size, crystallographic preferred orientation, and dislocation density. We observe amplitude‐ and frequency‐dependent attenuation and modulus relaxation and find that numerical solutions of the backstress model match our results well. Therefore, we argue that interactions among dislocations, rather than intergranular processes (e.g., plastic anisotropy or grain boundary sliding), control the viscoelastic behavior of polycrystalline olivine in our experiments. In addition, we present a linearized version of the constitutive equations of the backstress model and extrapolate it to conditions typical of seismic‐wave propagation in the upper mantle. Our extrapolation demonstrates that the backstress model can explain the magnitude of seismic‐wave attenuation in the upper mantle, although some modification is required to explain the weak frequency dependence of attenuation observed in nature and in previous experimental work. 
    more » « less
  5. Abstract We develop a conceptual/quantitative framework whereby measurements of Earth's viscoelasticity may be assessed across the broad range of geophysical processes, spanning seismic wave propagation, postseismic relaxation, glacial isostatic adjustment, and mantle convection. Doing so requires overcoming three challenges: (A) separating spatial variations from intrinsic frequency dependence in mechanical properties; (B) reconciling different conceptual and constitutive viscoelastic models used to interpret observations at different frequencies; and (C) improving understanding of linear and nonlinear transient deformation mechanisms and their extrapolation from laboratory to earth conditions. We focus on (B), first demonstrating how different mechanical models lead to incompatible viscosity estimates from observations. We propose the determination of the “complex viscosity”—a frequency‐dependent parameter complementary to other measures of dissipation (including frequency‐dependent moduli and attenuation)—from such observations to reveal a single underlying broadband mechanical model. The complex viscosity illuminates transient creep in the vicinity of the Maxwell time, where most ambiguity lies. 
    more » « less