skip to main content


Title: Evidence for faulting and fluid-driven earthquake processes from seismic attenuation variations beneath metropolitan Los Angeles
Abstract

Seismicity in the Los Angeles metropolitan area has been primarily attributed to the regional stress loading. Below the urban areas, earthquake sequences have occurred over time showing migration off the faults and providing evidence that secondary processes may be involved in their evolution. Combining high-frequency seismic attenuation with other geophysical observations is a powerful tool for understanding which Earth properties distinguish regions with ongoing seismicity. We develop the first high-resolution 3D seismic attenuation models across the region east of downtown Los Angeles using 5,600 three-component seismograms from local earthquakes recorded by a dense seismic array. We present frequency-dependent peak delay and coda-attenuation tomography as proxies for seismic scattering and absorption, respectively. The scattering models show high sensitivity to the seismicity along some of the major faults, such as the Cucamonga fault and the San Jacinto fault zone, while a channel of low scattering in the basement extends from near the San Andreas fault westward. In the vicinity of the Fontana seismic sequence, high absorption, low scattering, and seismicity migration across a fault network suggest fluid-driven processes. Our attenuation and fault network imaging characterize near-fault zones and rock-fluid properties beneath the study area for future improvements in seismic hazard evaluation.

 
more » « less
NSF-PAR ID:
10528402
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We constrained sedimentary basin structure using a nodal seismic array consisting of ten dense lines that overlie multiple basins in the northern Los Angeles area. The dense array consists of 758 seismic nodes, spaced ~250–300 m apart along linear transects, that recorded ground motions for 30–35 days. We applied the receiver function (RF) technique to 16 teleseismic events to investigate basin structure. Primary basin-converted phases were identified in the RFs. A shear wave velocity model produced in a separate study using the same dataset was incorporated to convert the basin time arrivals to depth. The deepest part of the San Bernardino basin was identified near the Loma Linda fault at a depth of 2.4 km. Basin depths identified at pierce points for separate events reveal lateral changes in basin depth across distances of ~2–3 km near individual stations. A significant change in basin depth was identified within a small distance of ~4 km near the San Jacinto fault. The San Gabriel basin exhibited the largest basin depths of all three basins, with a maximum depth of 4.2 km. The high lateral resolution from the dense array helped to reveal more continuous structures and reduce uncertainties in the RFs interpretation. We discovered a more complex basin structure than previously identified. Our findings show that the basins’ core areas are not the deepest, and significant changes in basin depth were observed near some faults, including the San Jacinto fault, Fontana fault, Red Hill fault and Indian Hill fault.

     
    more » « less
  2. Abstract

    Repeating earthquake sequences have been actively investigated to clarify many aspects of earthquake physics. The two particularly well‐studied sequences, known as the Los Angeles and San Francisco repeaters, have several intriguing observations, including their long (for the seismic moment) recurrence times that would suggest stress drops of 300 MPa based on typical assumptions, near‐syncronized timing prior to 2004, and higher than typical inferred stress drops (of 25 to 65 MPa, up to 90 MPa locally), but not as high as the recurrence times suggest. Here we show that all these observations are self‐consistent, in the sense that they can be reproduced in a single fault model. The suitable models build on the standard rate‐and‐state fault models, with velocity‐weakening patches imbedded into a velocity‐strengthening region, by adding either enhanced dynamic weakening during seismic slip or elevated normal stress on the patches, or both, to allow for the higher stress drops. Such models are able to match the observed average properties of the San Francisco and Los Angeles repeaters, as well as the overall nontrivial scaling between the recurrence time and seismic moment exhibited by many repeating sequences as a whole, for reasonable parameter choices based on experiments and theoretical studies. These models are characterized by the occurrence of substantial and variable aseismic slip at the locations of the repeating sources, which explains their atypical relation between recurrence interval and seismic moment, induces variability in the repeating source properties as observed, and results in their neither slip‐ nor time‐predictable behavior.

     
    more » « less
  3. Abstract

    The metropolitan Los Angeles region represents a zone of high‐seismic risk due to its proximity to several fault systems, including the San Andreas fault. Adding to this problem is the fact that Los Angeles and its surrounding cities are built on top of soft sediments that tend to trap and amplify seismic waves generated by earthquakes. In this study, we use three dense petroleum industry surveys deployed in a 16 × 16‐km area at Long Beach, California, to produce a high‐resolution model of the top kilometer of the crust and investigate the influence of its structural variations on the amplification of seismic waves. Our velocity estimates reveal substantial lateral contrasts and correlate remarkably well with the geological background of the area, illuminating features such as the Newport‐Inglewood fault, the Silverado aquifer, and the San Gabriel river. We then use computational modeling to show that the presence of these small‐scale structures have a clear impact on the intensity of the expected shaking, and can cause ground‐motion motion acceleration to change by several factors over a subkilometer horizontal scale. These results shed light onto the scale of variations that can be expected in this type of tectonic settings and highlight the importance of resolution in modern‐day seismic hazard estimates.

     
    more » « less
  4. Abstract

    A self‐consistent regional‐scale seismic velocity model with resolution from seismogenic depth to the surface is crucial for seismic hazard assessment. Though Southern California is the most seismically imaged region in the world, techniques with high near‐surface sensitivity have been applied only in disparate local areas and have not been incorporated into a unified model with deeper resolution. In the present work, we obtain isotropic values for Rayleigh wave phase velocity and ellipticity in Southern California by cross‐correlating daily time series from the year 2015 across 315 regional stations in period ranges 6 to 18 s. Leveraging the complementary sensitivity of the two Rayleigh wave data sets, we combine H/V and phase velocity measurements to determine a new 3‐D shear velocity model in a Bayesian joint inversion framework. The new model has greatly improved shallow resolution compared to the Southern California Earthquake Center CVMS4.26 reference model. Well‐known large‐scale features common to previous studies are resolved, including velocity contrasts across the San Andreas, San Jacinto, Garlock, and Elsinore faults, midcrustal high‐velocity structure beneath the Mojave Desert, and shallow Moho beneath the Salton Trough. Other prominent features that have previously only been imaged in focused local studies include the correct sedimentary thickness of the southern Central Valley, fold structure of the Ventura and Oak Ridge Anticlines, and velocity contrast across the Newport‐Inglewood fault. The new shallow structure will greatly impact simulation‐based studies of seismic hazard, especially in the near‐surface low‐velocity zones beneath densely populated areas like the Los Angeles, San Bernardino, and Ventura Basins.

     
    more » « less
  5. Abstract

    Understanding the magmatic plumbing system of rift volcanoes is essential when examining the interplay between magmatic and tectonic forces. Recent seismicity, volcanic activity, magma emplacement, and volatile release make the Natron basin the ideal location to study these processes in the East African Rift System. Here, we present the first high‐resolution tomographic imaging of Oldoinyo Lengai volcano and surrounding volcanic systems using attenuation mapping. High scattering and absorption features reveal fluid‐filled fracture networks below regions of magmatic volatile release at the surface and a close spatial association between carbonatite volcanism and deeply penetrating, fluid‐filled faults. High‐absorption features appear sensitive to fluids and thermal gradients, revealing a central sill complex and connected plumbing system down to the mid‐crust, which links volcanoes and rift segments across the developing magmatic rift.

     
    more » « less