skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nuclei in the toy world: beyond the Pomeron in zero transverse dimensions
A bstract We explore possible extensions of the t -channel and s -channel unitary model of high energy evolution in zero transverse dimensions appropriate to very high energy/atomic number where the dipole density in a toy hadron is parametrically high. We suggest that the appropriate generalization is to allow emission of more than one dipole in a single step of energy evolution. We construct explicitly such a model that preserves the t -channel and s-channel unitarity and have the correct low density limit, and study the particle multiplicity distribution resulting from this evolution. We consider initial conditions of a single dipole and many dipoles at initial rapidity. We observe that the saturation regime in this model is preceded by a parametric range of rapidities $$ \frac{1}{\alpha_s}\ln \frac{1}{\alpha_s}<\frac{1}{\alpha_s}\ln \frac{1}{\alpha_s^2} $$ 1 α s ln 1 α s < Y < 1 α s ln 1 α s 2 , where the saturation effects are still unimportant, but multiple emissions determine the properties of the evolution. We also discuss the influence of the saturation on the parton cascade and, in particular, find that in the saturation regime the entropy of partons becomes S ≈ $$ \frac{1}{2} $$ 1 2 ln N where N is the mean multiplicity.  more » « less
Award ID(s):
1913890
PAR ID:
10338725
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We use polarization-resolved electronic Raman spectroscopy to study quadrupolar charge dynamics in a nonmagnetic F e S e 1 − x S x superconductor. We observe two types of long-wavelength X Y symmetry excitations: 1) a low-energy quasi-elastic scattering peak (QEP) and 2) a broad electronic continuum with a maximum at 55 meV. Below the tetragonal-to-orthorhombic structural transition at T S ( x ) , a pseudogap suppression with temperature dependence reminiscent of the nematic order parameter develops in the X Y symmetry spectra of the electronic excitation continuum. The QEP exhibits critical enhancement upon cooling toward T S ( x ) . The intensity of the QEP grows with increasing sulfur concentration x and maximizes near critical concentration x c r ≈ 0.16 , while the pseudogap size decreases with the suppression of T S ( x ) . We interpret the development of the pseudogap in the quadrupole scattering channel as a manifestation of transition from the non-Fermi liquid regime, dominated by strong Pomeranchuk-like fluctuations giving rise to intense electronic continuum of excitations in the fourfold symmetric high-temperature phase, to the Fermi liquid regime in the broken-symmetry nematic phase where the quadrupole fluctuations are suppressed. 
    more » « less
  2. null (Ed.)
    Abstract This paper presents the measurements of $$\pi ^{\pm }$$ π ± , $$\mathrm {K}^{\pm }$$ K ± , $$\text {p}$$ p and $$\overline{\mathrm{p}} $$ p ¯ transverse momentum ( $$p_{\text {T}}$$ p T ) spectra as a function of charged-particle multiplicity density in proton–proton (pp) collisions at $$\sqrt{s}\ =\ 13\ \text {TeV}$$ s = 13 TeV with the ALICE detector at the LHC. Such study allows us to isolate the center-of-mass energy dependence of light-flavour particle production. The measurements reported here cover a $$p_{\text {T}}$$ p T range from 0.1 to 20 $$\text {GeV}/c$$ GeV / c and are done in the rapidity interval $$|y|<0.5$$ | y | < 0.5 . The $$p_{\text {T}}$$ p T -differential particle ratios exhibit an evolution with multiplicity, similar to that observed in pp collisions at $$\sqrt{s}\ =\ 7\ \text {TeV}$$ s = 7 TeV , which is qualitatively described by some of the hydrodynamical and pQCD-inspired models discussed in this paper. Furthermore, the $$p_{\text {T}}$$ p T -integrated hadron-to-pion yield ratios measured in pp collisions at two different center-of-mass energies are consistent when compared at similar multiplicities. This also extends to strange and multi-strange hadrons, suggesting that, at LHC energies, particle hadrochemistry scales with particle multiplicity the same way under different collision energies and colliding systems. 
    more » « less
  3. Given a simple graph $$G$$, the irregularity strength of $$G$$, denoted $s(G)$, is the least positive integer $$k$$ such that there is a weight assignment on edges $$f: E(G) \to \{1,2,\dots, k\}$$ for which each vertex weight $$f^V(v):= \sum_{u: \{u,v\}\in E(G)} f(\{u,v\})$$ is unique amongst all $$v\in V(G)$$. In 1987, Faudree and Lehel conjectured that there is a constant $$c$$ such that $$s(G) \leq n/d + c$$ for all $$d$$-regular graphs $$G$$ on $$n$$ vertices with $d>1$, whereas it is trivial that $$s(G) \geq n/d$$. In this short note we prove that the Faudree-Lehel Conjecture holds when $$d \geq n^{0.8+\epsilon}$$ for any fixed $$\epsilon >0$$, with a small additive constant $c=28$ for $$n$$ large enough. Furthermore, we confirm the conjecture asymptotically by proving that for any fixed $$\beta\in(0,1/4)$$ there is a constant $$C$$ such that for all $$d$$-regular graphs $$G$$, $$s(G) \leq \frac{n}{d}(1+\frac{C}{d^{\beta}})+28$$, extending and improving a recent result of Przybyło that $$s(G) \leq \frac{n}{d}(1+ \frac{1}{\ln^{\epsilon/19}n})$$ whenever $$d\in [\ln^{1+\epsilon} n, n/\ln^{\epsilon}n]$$ and $$n$$ is large enough. 
    more » « less
  4. A bstract Production of inclusive charmonia in pp collisions at center-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV and p–Pb collisions at center-of-mass energy per nucleon pair of $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 8 . 16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states ( J/ψ , ψ (2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame 2 . 5 < y cms < 4 . 0 for pp collisions, and 2 . 03 < y cms < 3 . 53 and −4 . 46 < y cms < −2 . 96 for p–Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity (| η | < 1 . 0). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The ψ (2S) yield increases with the charged-particle pseudorapidity density. The ratio of ψ (2S) over J/ψ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/ψ and ψ (2S) yields with respect to charged-particle pseudorapidity density. Results for the ψ (2S) yield and its ratio with respect to J/ψ agree with available model calculations. 
    more » « less
  5. Let $$H$$ and $$F$$ be hypergraphs. We say $$H$$ {\em contains $$F$$ as a trace} if there exists some set $$S \subseteq V(H)$$ such that $$H|_S:=\{E\cap S: E \in E(H)\}$$ contains a subhypergraph isomorphic to $$F$$. In this paper we give an upper bound on the number of edges in a $$3$$-uniform hypergraph that does not contain $$K_{2,t}$$ as a trace when $$t$$ is large. In particular, we show that $$\lim_{t\to \infty}\lim_{n\to \infty} \frac{\mathrm{ex}(n, \mathrm{Tr}_3(K_{2,t}))}{t^{3/2}n^{3/2}} = \frac{1}{6}.$$ Moreover, we show $$\frac{1}{2} n^{3/2} + o(n^{3/2}) \leqslant \mathrm{ex}(n, \mathrm{Tr}_3(C_4)) \leqslant \frac{5}{6} n^{3/2} + o(n^{3/2})$$. 
    more » « less