skip to main content


Search for: All records

Award ID contains: 1913890

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Within the dense-dilute Color Glass Condensate approach, and using the Golec–Biernat–Wuesthoff model for the dipole scattering amplitude, we calculate$$v_2^2$$v22as well as the correlations between$$v_2^2$$v22and both the total multiplicity and the mean transverse momentum of produced particles. We find that the correlations are generally very small consistent with the observations. We note an interesting sharp change in the value of$$v^2_2$$v22as well as of its correlations as a function of the width of the transverse momentum bin. This crossover is associated with the change from Bose enhancement dominance of the correlation for narrow bin to HBT dominated correlations for larger bin width.

     
    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. A bstract We provide the first calculation of two-gluon production at mid-rapidity in ultra-peripheral collisions in the Color Glass Condensate framework. To estimate systematic uncertainty associated with poor understanding of the wave function of the nearly real photon, we consider two diametrically different models: the dilute quark-antiquark dipole approximation and a vector meson, in which color charge density is approximated by McLerran-Venugopalan model. In the experimentally relevant range, the target nucleus can be faithfully approximated by a highly saturated state. This simplification enables us to perform efficient numerical simulations and extract the two-gluon correlation functions and the associated azimuthal harmonics. 
    more » « less
  4. A bstract We explore possible extensions of the t -channel and s -channel unitary model of high energy evolution in zero transverse dimensions appropriate to very high energy/atomic number where the dipole density in a toy hadron is parametrically high. We suggest that the appropriate generalization is to allow emission of more than one dipole in a single step of energy evolution. We construct explicitly such a model that preserves the t -channel and s-channel unitarity and have the correct low density limit, and study the particle multiplicity distribution resulting from this evolution. We consider initial conditions of a single dipole and many dipoles at initial rapidity. We observe that the saturation regime in this model is preceded by a parametric range of rapidities $$ \frac{1}{\alpha_s}\ln \frac{1}{\alpha_s} more » « less
  5. null (Ed.)
    A bstract Motivated by the question of unitarity of Reggeon Field Theory, we use the effective field theory philosophy to find possible Reggeon Field Theory Hamiltonians H RFT . We require that H RFT is self dual, reproduce all known limits (dilute-dense and dilute-dilute) and exhibits all the symmetries of the JIMWLK Hamiltonian. We find a family of Hamiltonians which satisfy all the above requirements. One of these is identical in form to the so called “diamond action” discussed in [67, 68]. However we show by explicit calculation that the so called “diamond condition” is not satisfied beyond leading perturbative order. 
    more » « less
  6. null (Ed.)
    A bstract Further developing ideas set forth in [1], we discuss QCD Reggeon Field Theory (RFT) and formulate restrictions imposed on its Hamiltonian by the unitarity of underlying QCD. We identify explicitly the QCD RFT Hilbert space, provide algebra of the basic degrees of freedom (Wilson lines and their duals) and the algorithm for calculating the scattering amplitudes. We formulate conditions imposed on the “Fock states” of RFT by unitary nature of QCD, and explain how these constraints appear as unitarity constraints on possible RFT hamiltonians that generate energy evolution of scattering amplitudes. We study the realization of these constraints in the dense-dilute limit of RFT where the appropriate Hamiltonian is the JIMWLK Hamiltonian H JIMWLK . We find that the action H JIMWLK on the dilute projectile states is unitary, but acting on dense “target” states it violates unitarity and generates states with negative probabilities through energy evolution. 
    more » « less