skip to main content

Title: Environmental factors affecting chytrid (Chytridiomycota) infection rates on Planktothrix agardhii
Abstract Planktothrix agardhii dominates the cyanobacterial harmful algal bloom biomass in Sandusky Bay, Lake Erie (USA) from May until September. This filamentous cyanobacterium known parasites including the chytrid fungal species Rhizophydium sp. C02, which was previously isolated from this region. The purpose of our work has been to establish how parasitic interactions affect Planktothrix population dynamics during a bloom event. Samples analyzed from the 2015 to 2019 bloom seasons using quantitative PCR investigate the spatial and temporal prevalence of chytrid infections. Abiotic factors examined in lab include manipulating temperature (17–31°C), conductivity (0.226–1.225 mS/cm) and turbulence. Planktothrix-specific chytrids are present throughout the bloom period and are occasionally at high enough densities to exert parasitic pressure on their hosts. Temperatures above 27.1°C in lab can inhibit chytrid infection, indicating the presence of a possible upper thermal refuge for the host. Data suggest that chytrids can survive conductivity spikes in lab at levels three-fold above Sandusky Bay waters if given sufficient time (7–12 days), whereas increased turbulence in lab severely inhibits chytrid infections, perhaps due to disruption of chemical signaling. Overall, these data provide insights into the environmental conditions that inhibit chytrid infections during Planktothrix-dominated blooms in temperate waters.
Authors:
; ; ; ;
Editors:
Beisner, Beatrix E
Award ID(s):
1840715
Publication Date:
NSF-PAR ID:
10338745
Journal Name:
Journal of Plankton Research
Volume:
43
Issue:
5
Page Range or eLocation-ID:
658 to 672
ISSN:
0142-7873
Sponsoring Org:
National Science Foundation
More Like this
  1. Stams, Alfons J. (Ed.)
    ABSTRACT Planktothrix agardhii dominates the cyanobacterial harmful algal bloom community in Sandusky Bay, Lake Erie (USA), from May through September. This filamentous cyanobacterium is host to a known obligate parasite, the chytrid Rhizophydium sp. During the 2018 bloom season, by utilizing dilution and single-filament isolation techniques, 7 chytrid and 12 P. agardhii strains were isolated from Sandusky Bay. These 7 chytrids and a selection of P. agardhii hosts were then characterized with respect to infection rates. Infections by the isolated chytrids were specific to Planktothrix planktonic species and were not found on other filamentous cyanobacterial taxa present in the bay ( Aphanizomenon sp. and Cuspidothrix sp.). Even among the potential P. agardhii host strains, individual chytrid isolates had different degrees of infectivity and showed preferences for different host isolates, suggesting possible ecological partitioning even within the same sample population. When mechanisms of chytrid pathogenesis were examined, the zoospores displayed a swarming pattern to attack and fracture the host filament and create new infection sites at the trichome termini. Infections by these parasitic chytrids also led to a release of intracellular microcystin toxins from the hosts. Additionally, infections were dependent on medium type, highlighting the importance of medium choice for experimentalmore »outcomes. Media in which chytrid swarming was observed closely matched the ionic strength of the natural environment. Understanding pathogenesis by fungal parasites will assist future efforts to determine environmental factors favoring loss mechanisms for Planktothrix agardhii -dominated blooms. IMPORTANCE Whereas many studies have focused on the factors contributing to the establishment and persistence of cyanobacterial harmful algal blooms (cHABs), few studies have examined bloom pathogenesis. Chytrid fungi infect cyanobacteria and stimulate food web interactions through manipulation of previously hard-to-digest filaments and the release of nutrients to support heterotrophic microbes. Specifically, chytrids infective for filamentous Planktothrix agardhii exhibit a species-specific infection that fragments trichomes into shorter units that can be consumed more easily by grazers. Chytrid zoospores also serve as a high-quality food source for the lower food web. Understanding host-pathogen relationships and mechanisms of pathogenesis on cyanobacteria will be necessary to effectively model the ecology of cHABs.« less
  2. Abstract Two species of parasitic fungi from the phylum Chytridiomycota (chytrids)are annihilating global amphibian populations. These chytrid species— Batrachochytrium dendrobatidis and B. salamandrivorans —have high rates of mortality and transmission. Uponestablishing infection in amphibians, chytrids rapidly multiply within the skin anddisrupt their hosts’ vital homeostasis mechanisms. Current disease models suggest thatchytrid fungi locate and infect their hosts during a motile, unicellular ‘zoospore’ lifestage. Moreover, other chytrid species parasitize organisms from across the tree oflife, making future epidemics in new hosts a likely possibility. Efforts to mitigate thedamage and spread of chytrid disease have been stymied by the lack of knowledge aboutbasic chytrid biology and tools with which to test molecular hypotheses about diseasemechanisms. To overcome this bottleneck, we have developed high-efficiency delivery ofmolecular payloads into chytrid zoospores using electroporation. Our electroporationprotocols result in payload delivery to between 75 and 97% of living cells of threespecies: B. dendrobatidis, B. salamandrivorans, and anon-pathogenic relative, Spizellomyces punctatus .This method lays the foundation for molecular genetic tools needed to establishecological mitigation strategies and answer broader questions in evolutionary and cellbiology.
  3. Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.
  4. As harmful algae blooms are increasing in frequency and magnitude, one goal of a new generation of higher spectral resolution satellite missions is to improve the potential of satellite optical data to monitor these events. A satellite-based algorithm proposed over two decades ago was used for the first time to monitor the extent and temporal evolution of a massive bloom of the dinoflagellate Lingulodinium polyedra off Southern California during April and May 2020. The algorithm uses ultraviolet (UV) data that have only recently become available from the single ocean color sensor on the Japanese GCOM-C satellite. Dinoflagellates contain high concentrations of mycosporine-like amino acids and release colored dissolved organic matter, both of which absorb strongly in the UV part of the spectrum. Ratios <1 of remote sensing reflectance of the UV band at 380 nm to that of the blue band at 443 nm were used as an indicator of the dinoflagellate bloom. The satellite data indicated that an observed, long, and narrow nearshore band of elevated chlorophyll-a (Chl-a) concentrations, extending from northern Baja to Santa Monica Bay, was dominated by L. polyedra. In other high Chl-a regions, the ratios were >1, consistent with historical observations showing a sharp transitionmore »from dinoflagellate- to diatom-dominated waters in these areas. UV bands are thus potentially useful in the remote sensing of phytoplankton blooms but are currently available only from a single ocean color sensor. As several new satellites such as the NASA Plankton, Aerosol, Cloud, and marine Ecosystem mission will include UV bands, new algorithms using these bands are needed to enable better monitoring of blooms, especially potentially harmful algal blooms, across large spatiotemporal scales.« less
  5. Phytoplankton blooms in the Arctic marginal ice zone (MIZ) can be prolific dimethylsulfide (DMS) producers, thereby influencing regional aerosol formation and cloud radiative forcing. Here we describe the distribution of DMS and its precursor dimethylsulfoniopropionate (DMSP) across the Baffin Bay receding ice edge in early summer 2016. Overall, DMS and total DMSP (DMSPt) increased towards warmer waters of Atlantic origin concurrently with more advanced ice-melt and bloom stages. Relatively high DMS and DMSPt (medians of 6.3 and 70 nM, respectively) were observed in the surface layer (0–9 m depth), and very high values (reaching 74 and 524 nM, respectively) at the subsurface biomass maximum (15–30 m depth). Microscopic and pigment analyses indicated that subsurface DMS and DMSPt peaks were associated with Phaeocystis pouchetii, which bloomed in Atlantic-influenced waters and reached unprecedented biomass levels in Baffin Bay. In surface waters, DMS concentrations and DMS:DMSPt ratios were higher in the MIZ (medians of 12 nM and 0.15, respectively) than in fully ice-covered or ice-free conditions, potentially associated with enhanced phytoplanktonic DMSP release and bacterial DMSP cleavage (high dddP:dmdA gene ratios). Mean sea–air DMS fluxes (micromol m–2 d–1) increased from 0.3 in ice-covered waters to 10 in open waters (maximum of 26) owingmore »to concurrent trends in near-surface DMS concentrations and physical drivers of gas exchange. Using remotely sensed sea-ice coverage and a compilation of sea–air DMS flux data, we estimated that the pan-Arctic DMS emission from the MIZ was 5–13 Gg S yr–1. North of 80 oN, DMS emissions might have increased by around 10% yr–1 between 2003 and 2014, likely exceeding open-water emissions in June and July. We conclude that DMS emissions from the MIZ must be taken into account to evaluate plankton-climate feedbacks in the Arctic.« less