Abstract Lake Erie, USA–Canada, plays an important ecological and socioeconomic role but has suffered from chronic eutrophication. In particular, western Lake Erie (WLE) is the site of harmful algal blooms (HABs) which are suspected of being driven by excessive nutrient (phosphorus (P) and nitrogen (N)) inputs. During 2022 and 2023, in situ nutrient dilution and addition bioassays were conducted at a WLE bloom‐impacted location to investigate whether a nutrient reduction regime would be effective in limiting phytoplankton growth during the June diatom‐dominated spring blooms and August cyanobacteria‐dominated summer blooms. The primary objectives of this experiment were to (1) Determine if a proposed 40% P‐alone reduction would effectively reduce phytoplankton growth and mitigate blooms and (2) assess whether reductions in both P and N are more effective in controlling phytoplankton biomass than exclusive reductions in either N or P. Samples were analyzed for nutrient concentrations and growth rate responses for specific algal groups, utilizing diagnostic (for major algal groups) photopigments. Results indicated that although both 20% and 40% dilutions led to lower phytoplankton biomass and growth rates, 40% reductions were more effective. Our results support the USA–Canada Great Lakes Water Quality Agreement recommendation of a 40% P reduction, but also indicate that a parallel reduction of N input by 40% would be most effective in controlling bloom magnitudes. Overall, our findings underscore the recommendation that a year‐round dual N and P 40% reduction is needed for long‐term control of eutrophication and algal blooms, including cyanobacteria and diatoms, in Lake Erie.
more »
« less
Roles of Nutrient Limitation on Western Lake Erie CyanoHAB Toxin Production
Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.
more »
« less
- PAR ID:
- 10275073
- Date Published:
- Journal Name:
- Toxins
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2072-6651
- Page Range / eLocation ID:
- 47
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stams, Alfons J. (Ed.)ABSTRACT Planktothrix agardhii dominates the cyanobacterial harmful algal bloom community in Sandusky Bay, Lake Erie (USA), from May through September. This filamentous cyanobacterium is host to a known obligate parasite, the chytrid Rhizophydium sp. During the 2018 bloom season, by utilizing dilution and single-filament isolation techniques, 7 chytrid and 12 P. agardhii strains were isolated from Sandusky Bay. These 7 chytrids and a selection of P. agardhii hosts were then characterized with respect to infection rates. Infections by the isolated chytrids were specific to Planktothrix planktonic species and were not found on other filamentous cyanobacterial taxa present in the bay ( Aphanizomenon sp. and Cuspidothrix sp.). Even among the potential P. agardhii host strains, individual chytrid isolates had different degrees of infectivity and showed preferences for different host isolates, suggesting possible ecological partitioning even within the same sample population. When mechanisms of chytrid pathogenesis were examined, the zoospores displayed a swarming pattern to attack and fracture the host filament and create new infection sites at the trichome termini. Infections by these parasitic chytrids also led to a release of intracellular microcystin toxins from the hosts. Additionally, infections were dependent on medium type, highlighting the importance of medium choice for experimental outcomes. Media in which chytrid swarming was observed closely matched the ionic strength of the natural environment. Understanding pathogenesis by fungal parasites will assist future efforts to determine environmental factors favoring loss mechanisms for Planktothrix agardhii -dominated blooms. IMPORTANCE Whereas many studies have focused on the factors contributing to the establishment and persistence of cyanobacterial harmful algal blooms (cHABs), few studies have examined bloom pathogenesis. Chytrid fungi infect cyanobacteria and stimulate food web interactions through manipulation of previously hard-to-digest filaments and the release of nutrients to support heterotrophic microbes. Specifically, chytrids infective for filamentous Planktothrix agardhii exhibit a species-specific infection that fragments trichomes into shorter units that can be consumed more easily by grazers. Chytrid zoospores also serve as a high-quality food source for the lower food web. Understanding host-pathogen relationships and mechanisms of pathogenesis on cyanobacteria will be necessary to effectively model the ecology of cHABs.more » « less
-
Rudi, Knut (Ed.)ABSTRACT Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [ mcyA–J ]), partial (truncated mcyA , complete mcyBC , and missing mcyD–J ), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ , suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing.more » « less
-
Cyanobacterial harmful algal blooms (CyanoHABs) are an increasingly common feature of large, eutrophic lakes. Non-N2-fixing CyanoHABs (e.g., Microcystis) appear to be proliferating relative to N2-fixing CyanoHABs in systems receiving increasing nutrient loads. This shift reflects increasing external nitrogen (N) inputs, and a[50-year legacy of excessive phosphorus (P) and N loading. Phosphorus is effectively retained in legacy-impacted systems, while N may be retained or lost to the atmosphere in gaseous forms (e.g., N2, NH3, N2O). Biological control on N inputs versus outputs, or the balance between N2 fixation versus denitrification, favors the latter, especially in lakes undergoing accelerating eutrophication, although denitrification removal efficiency is inhibited by increasing external N loads. Phytoplankton in eutrophic lakes have become more responsive to N inputs relative to P, despite sustained increases in N loading. From a nutrient management perspective, this suggests a need to change the freshwater nutrient limitation and input reduction paradigms; a shift from an exclusive focus on P limitation to a dual N and P colimitation and management strategy. The recent proliferation of toxic non-N2-fixing CyanoHABs, and ever-increasing N and P legacy stores, argues for such a strategy if we are to mitigate eutrophication and CyanoHAB expansion globally.more » « less
-
Beisner, Beatrix E (Ed.)Abstract Planktothrix agardhii dominates the cyanobacterial harmful algal bloom biomass in Sandusky Bay, Lake Erie (USA) from May until September. This filamentous cyanobacterium known parasites including the chytrid fungal species Rhizophydium sp. C02, which was previously isolated from this region. The purpose of our work has been to establish how parasitic interactions affect Planktothrix population dynamics during a bloom event. Samples analyzed from the 2015 to 2019 bloom seasons using quantitative PCR investigate the spatial and temporal prevalence of chytrid infections. Abiotic factors examined in lab include manipulating temperature (17–31°C), conductivity (0.226–1.225 mS/cm) and turbulence. Planktothrix-specific chytrids are present throughout the bloom period and are occasionally at high enough densities to exert parasitic pressure on their hosts. Temperatures above 27.1°C in lab can inhibit chytrid infection, indicating the presence of a possible upper thermal refuge for the host. Data suggest that chytrids can survive conductivity spikes in lab at levels three-fold above Sandusky Bay waters if given sufficient time (7–12 days), whereas increased turbulence in lab severely inhibits chytrid infections, perhaps due to disruption of chemical signaling. Overall, these data provide insights into the environmental conditions that inhibit chytrid infections during Planktothrix-dominated blooms in temperate waters.more » « less
An official website of the United States government

