skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracing the active genetic diversity of Microcystis and Microcystis phage through a temporal survey of Taihu
Harmful algal blooms are commonly thought to be dominated by a single genus, but they are not homogenous communities. Current approaches, both molecular and culture-based, often overlook fine-scale variations in community composition that can influence bloom dynamics. We combined homology-based searches (BLASTX) and phylogenetics to distinguish and quantify Microcystis host and phage members across a summer season during a 2014 Microcystis- dominated bloom that occurred in Lake Tai ( Taihu ), China. We found 47 different genotypes of the Microcystis- specific DNA-dependent RNA polymerase ( rpo B), which included several morphospecies. Microcystis flos-aquae and Microcystis wesenbergii accounted for ~86% of total Microcystis transcripts, while the more commonly studied Microcystis aeruginosa only accounted for ~7%. Microcystis genotypes were classified into three temporal groups according to their expression patterns across the course of the bloom: early, constant and late. All Microcystis morphospecies were present in each group, indicating that expression patterns were likely dictated by competition driven by environmental factors, not phylogeny. We identified three primary Microcystis -infecting phages based on the viral terminase, including a novel Siphoviridae phage that may be capable of lysogeny. Within our dataset, Myoviridae phages consistent with those infecting Microcystis in a lytic manner were positively correlated to the early host genotypes, while the Siphoviridae phages were positively correlated to the late host genotypes, when the Myoviridae phages express putative genetic markers for lysogeny. The expression of genes in the microcystin-encoding mcy cassette was estimated using mcyA , which revealed 24 Microcystis- specific genotypes that were negatively correlated to the early host genotypes. Of all environmental factors measured, pH best described the temporal shift in the Microcystis community genotypic composition, promoting hypotheses regarding carbon concentration mechanisms and oxidative stress. Our work expounds on the complexity of HAB events, using a well-studied dataset to highlight the need for increased resolution of community dynamics.  more » « less
Award ID(s):
1840715
PAR ID:
10338759
Author(s) / Creator(s):
;
Editor(s):
Humbert, Jean-François
Date Published:
Journal Name:
PLOS ONE
Volume:
15
Issue:
12
ISSN:
1932-6203
Page Range / eLocation ID:
e0244482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The environmental conditions experienced by microbial communities are rarely fully simulated in the laboratory. Researchers use experimental containers (“bottles”), where natural samples can be manipulated and evaluated. However, container-based methods are subject to “bottle effects”: changes that occur when enclosing the plankton community that are often times unexplained by standard measures like pigment and nutrient concentrations. We noted variability in a short-term, nutrient amendment experiment during a 2019 Lake Erie, Microcystis spp. bloom. We observed changes in heterotrophic bacteria activity (transcription) on a time-frame consistent with a response to experimental changes in nutrient availability, demonstrating how the often overlooked microbiome of cyanobacterial blooms can be altered. Samples processed at the time of collection (T0) contained abundant transcripts from Bacteroidetes, which reduced in abundance during incubation in all bottles, including controls. Significant biological variability in the expression of Microcystis -infecting phage was observed between replicates, with phosphate-amended treatments showing a 10-fold variation. The expression patterns of Microcystis -infecting phage were significantly correlated with ∼35% of Microcystis -specific functional genes and ∼45% of the cellular-metabolites measured across the entire microbial community, suggesting phage activity not only influenced Microcystis dynamics, but the biochemistry of the microbiome. Our observations demonstrate how natural heterogeneity among replicates can be harnessed to provide further insight on virus and host ecology. 
    more » « less
  2. null (Ed.)
    Western Lake Erie (Laurentian Great Lakes) is prone to annual cyanobacterial harmful algal blooms (cHABs) dominated by Microcystis spp. that often yield microcystin toxin concentrations exceeding the federal EPA recreational contact advisory of 8 g liter1. In August 2014, microcystin levels were detected in finished drinking water above the World Health Organization 1.0 g liter1 threshold for consumption, leading to a 2-day disruption in the supply of drinking water for 400,000 residents of Toledo, Ohio (USA). Subsequent metatranscriptomic analysis of the 2014 bloom event provided evidence that release of toxin into the water supply was likely caused by cyanophage lysis that transformed a portion of the intracellular microcystin pool into the dissolved fraction, rendering it more difficult to eliminate during treatment. In August 2019, a similar increase in dissolved microcystins at the Toledo water intake was coincident with a viral lytic event caused by a phage consortium different in composition from what was detected following the 2014 Toledo water crisis. The most abundant viral sequence in metagenomic data sets was a scaffold from a putative member of the Siphoviridae, distinct from the Ma-LMM01- like Myoviridae that are typically documented to occur in western Lake Erie. This study provides further evidence that viral activity in western Lake Erie plays a significant role in transformation of microcystins from the particulate to the dissolved fraction and therefore requires monitoring efforts from local water treatment plants. Additionally, identification of multiple lytic cyanophages will enable the development of a quantitative PCR toolbox to assess viral activity during cHABs. 
    more » « less
  3. Summary Interactions between bacteria and phytoplankton in the phycosphere have impacts at the scale of whole ecosystems, including the development of harmful algal blooms. The cyanobacteriumMicrocystiscauses toxic blooms that threaten freshwater ecosystems and human health globally.Microcystisgrows in colonies that harbour dense assemblages of other bacteria, yet the taxonomic composition of these phycosphere communities and the nature of their interactions withMicrocystisare not well characterized. To identify the taxa and compositional variance withinMicrocystisphycosphere communities, we performed 16S rRNA V4 region amplicon sequencing on individualMicrocystiscolonies collected biweekly via high‐throughput droplet encapsulation during a western Lake Erie cyanobacterial bloom. TheMicrocystisphycosphere communities were distinct from microbial communities in whole water and bulk phytoplankton seston in western Lake Erie but lacked ‘core’ taxa found across all colonies. However, dissimilarity in phycosphere community composition correlated with sampling date and theMicrocystis16S rRNA oligotype. Several taxa in the phycosphere were specific to and conserved withMicrocystisof a single oligotype or sampling date. Together, this suggests that physiological differences betweenMicrocystisstrains, temporal changes in strain phenotypes, and the composition of seeding communities may impact community composition of theMicrocystisphycosphere. 
    more » « less
  4. Imperiale, Michael J. (Ed.)
    ABSTRACT The effort to discover novel phages infecting Staphylococcus epidermidis contributes to both the development of phage therapy and the expansion of genome-based phage phylogeny. Here, we report the genome of an S. epidermidis -infecting phage, Lacachita, and compare its genome with those of five other phages with high sequence identity. These phages represent a novel siphovirus genus, which was recently reported in the literature. The published member of this group was favorably evaluated as a phage therapeutic agent, but Lacachita is capable of transducing antibiotic resistance and conferring phage resistance to transduced cells. Members of this genus may be maintained within their host as extrachromosomal plasmid prophages, through stable lysogeny or pseudolysogeny. Therefore, we conclude that Lacachita may be temperate and members of this novel genus are not suitable for phage therapy. IMPORTANCE This project describes the discovery of a culturable bacteriophage infecting Staphylococcus epidermidis that is a member of a rapidly growing novel siphovirus genus. A member of this genus was recently characterized and proposed for phage therapy, as there are few phages currently available to treat S. epidermidis infections. Our data contradict this, as we show Lacachita is capable of moving DNA from one bacterium to another, and it may be capable of maintaining itself in a plasmid-like state in infected cells. These phages’ putative plasmid-like extrachromosomal state appears to be due to a simplified maintenance mechanism found in true plasmids of Staphylococcus and related hosts. We suggest Lacachita and other identified members of this novel genus are not suitable for phage therapy. 
    more » « less
  5. Rudi, Knut (Ed.)
    ABSTRACT Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [ mcyA–J ]), partial (truncated mcyA , complete mcyBC , and missing mcyD–J ), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ , suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing. 
    more » « less