- Award ID(s):
- 1840715
- PAR ID:
- 10274989
- Date Published:
- Journal Name:
- Applied and environmental microbiology
- Volume:
- 86
- Issue:
- 22
- ISSN:
- 1070-6291
- Page Range / eLocation ID:
- e01397-20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Rudi, Knut (Ed.)ABSTRACT Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [ mcyA–J ]), partial (truncated mcyA , complete mcyBC , and missing mcyD–J ), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ , suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing.more » « less
-
van_der_Hooft, Justin_J J (Ed.)
ABSTRACT Microcystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However,Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenicMicrocystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic andin silico approaches, we show that theseMicrocystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire ofMicrocystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced byMicrocystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCE The genus
Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern,Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites inMicrocystis strains from the Western Lake Erie Culture Collection. This unique collection comprisesMicrocystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry. -
Abstract Freshwater cyanobacterial harmful algal blooms (CHABs) are a well‐known global public health threat. Monitoring and early detection of CHAB toxins are currently accomplished using labor‐intensive sampling techniques and subsequent shore‐based analyses, with results typically reported 24–48 h after sample collection. We have developed and implemented an uncrewed, autonomous mobile sampler‐analytical system capable of conducting targeted in situ toxin measurements in < 2 h. A surface plasmon resonance (SPR) instrument was combined with the environmental sample processor (ESP) to fully automate detection and quantification of particle‐associated cyanobacterial microcystins (pMC). This sensor‐sampler system was integrated with a long‐range autonomous underwater vehicle (LRAUV) and deployed in western Lake Erie for field trials in the summer of 2021. The LRAUV was remotely piloted to acquire samples at selected locations within and adjacent to a CHAB. Sixteen pMC measurements ranging from 0.09 to 0.55
μ g/L lake water were obtained over a 14‐day period without recovery of the LRAUV. The SPR/ESP/LRAUV system complements existing satellite, aerial, and manual sampling CHAB survey techniques, and could be used to enhance predictive models that underpin bloom and toxicity forecasts. This system is also extensible to detection of other algal toxins in freshwater and marine environments, with its near real‐time assessment of bloom toxin levels potentially offering additional socioeconomic benefits and public health protection in a variety of settings. -
Nojiri, Hideaki (Ed.)ABSTRACT In the oligotrophic oceans, key autotrophs depend on “helper” bacteria to reduce oxidative stress from hydrogen peroxide (H 2 O 2 ) in the extracellular environment. H 2 O 2 is also a ubiquitous stressor in freshwaters, but the effects of H 2 O 2 on autotrophs and their interactions with bacteria are less well understood in freshwaters. Naturally occurring H 2 O 2 in freshwater systems is proposed to impact the proportion of microcystin-producing (toxic) and non-microcystin-producing (nontoxic) Microcystis in blooms, which influences toxin concentrations and human health impacts. However, how different strains of Microcystis respond to naturally occurring H 2 O 2 concentrations and the microbes responsible for H 2 O 2 decomposition in freshwater cyanobacterial blooms are unknown. To address these knowledge gaps, we used metagenomics and metatranscriptomics to track the presence and expression of genes for H 2 O 2 decomposition by microbes during a cyanobacterial bloom in western Lake Erie in the summer of 2014. katG encodes the key enzyme for decomposing extracellular H 2 O 2 but was absent in most Microcystis cells. katG transcript relative abundance was dominated by heterotrophic bacteria. In axenic Microcystis cultures, an H 2 O 2 scavenger (pyruvate) significantly improved growth rates of one toxic strain while other toxic and nontoxic strains were unaffected. These results indicate that heterotrophic bacteria play a key role in H 2 O 2 decomposition in Microcystis blooms and suggest that their activity may affect the fitness of some Microcystis strains and thus the strain composition of Microcystis blooms but not along a toxic versus nontoxic dichotomy. IMPORTANCE Cyanobacterial harmful algal blooms (CHABs) threaten freshwater ecosystems globally through the production of toxins. Toxin production by cyanobacterial species and strains during CHABs varies widely over time and space, but the ecological drivers of the succession of toxin-producing species remain unclear. Hydrogen peroxide (H 2 O 2 ) is ubiquitous in natural waters, inhibits microbial growth, and may determine the relative proportions of Microcystis strains during blooms. However, the mechanisms and organismal interactions involved in H 2 O 2 decomposition are unexplored in CHABs. This study shows that some strains of bloom-forming freshwater cyanobacteria benefit from detoxification of H 2 O 2 by associated heterotrophic bacteria, which may impact bloom development.more » « less
-
null (Ed.)Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.more » « less