skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Delayed Auditory Feedback Elicits Specific Patterns of Serial Order Errors in a Paced Syllable Sequence Production Task
Purpose: Delayed auditory feedback (DAF) interferes with speech output. DAF causes distorted and disfluent productions and errors in the serial order of produced sounds. Although DAF has been studied extensively, the specific patterns of elicited speech errors are somewhat obscured by relatively small speech samples, differences across studies, and uncontrolled variables. The goal of this study was to characterize the types of serial order errors that increase under DAF in a systematic syllable sequence production task, which used a closed set of sounds and controlled for speech rate. Method: Sixteen adult speakers repeatedly produced CVCVCV (C = consonant, V = vowel) sequences, paced to a “visual metronome,” while hearing self-generated feedback with delays of 0–250 ms. Listeners transcribed recordings, and speech errors were classified based on the literature surrounding naturally occurring slips of the tongue. A series of mixed-effects models were used to assess the effects of delay for different error types, for error arrival time, and for speaking rate. Results: DAF had a significant effect on the overall error rate for delays of 100 ms or greater. Statistical models revealed significant effects (relative to zero delay) for vowel and syllable repetitions, vowel exchanges, vowel omissions, onset disfluencies, and distortions. Serial order errors were especially dominated by vowel and syllable repetitions. Errors occurred earlier on average within a trial for longer feedback delays. Although longer delays caused slower speech, this effect was mediated by the run number (time in the experiment) and small compared with those in previous studies. Conclusions: DAF drives a specific pattern of serial order errors. The dominant pattern of vowel and syllable repetition errors suggests possible mechanisms whereby DAF drives changes to the activity in speech planning representations, yielding errors. These mechanisms are outlined with reference to the GODIVA (Gradient Order Directions Into Velocities of Articulators) model of speech planning and production. Supplemental Material: https://doi.org/10.23641/asha.19601785  more » « less
Award ID(s):
2029245
PAR ID:
10338801
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Speech, Language, and Hearing Research
Volume:
65
Issue:
5
ISSN:
1092-4388
Page Range / eLocation ID:
1800 to 1821
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bizley, Jennifer K. (Ed.)
    Hearing one’s own voice is critical for fluent speech production as it allows for the detection and correction of vocalization errors in real time. This behavior known as the auditory feedback control of speech is impaired in various neurological disorders ranging from stuttering to aphasia; however, the underlying neural mechanisms are still poorly understood. Computational models of speech motor control suggest that, during speech production, the brain uses an efference copy of the motor command to generate an internal estimate of the speech output. When actual feedback differs from this internal estimate, an error signal is generated to correct the internal estimate and update necessary motor commands to produce intended speech. We were able to localize the auditory error signal using electrocorticographic recordings from neurosurgical participants during a delayed auditory feedback (DAF) paradigm. In this task, participants hear their voice with a time delay as they produced words and sentences (similar to an echo on a conference call), which is well known to disrupt fluency by causing slow and stutter-like speech in humans. We observed a significant response enhancement in auditory cortex that scaled with the duration of feedback delay, indicating an auditory speech error signal. Immediately following auditory cortex, dorsal precentral gyrus (dPreCG), a region that has not been implicated in auditory feedback processing before, exhibited a markedly similar response enhancement, suggesting a tight coupling between the 2 regions. Critically, response enhancement in dPreCG occurred only during articulation of long utterances due to a continuous mismatch between produced speech and reafferent feedback. These results suggest that dPreCG plays an essential role in processing auditory error signals during speech production to maintain fluency. 
    more » « less
  2. The speech-to-song illusion is a perceptual transformation in which a spoken phrase initially heard as speech begins to sound like song across repetitions. In two experiments, we tested whether phrase-specific learning and memory processes engaged by repetition contribute to the illusion. In Experiment 1, participants heard 16 phrases across two conditions. In both conditions, participants heard eight repetitions of each phrase and rated their experience after each repetition using a 10-point scale from “sounds like speech” to “sounds like song.” The conditions differed in whether the repetitions were heard consecutively or interleaved such that participants were exposed to other phrases between each repetition. The illusion was strongest when exposures to phrases happened consecutively, but phrases were still rated as more song-like after interleaved exposures. In Experiment 2, participants heard eight consecutive repetitions of each of eight phrases. Seven days later, participants were exposed to eight consecutive repetitions of the eight phrases heard previously as well as eight novel phrases. The illusion was preserved across a delay of one week: familiar phrases were rated as more song-like in session two than novel phrases. The results provide evidence for the role of rapid phrase-specific learning and long-term memory in the speech-to-song illusion. 
    more » « less
  3. Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive. To address this issue, we obtained intracranial electroencephalography (iEEG) recordings from 35 neurosurgical participants during speech production. We first characterized the detailed topography of auditory suppression, which varied across superior temporal gyrus (STG). Next, we performed a delayed auditory feedback (DAF) task to determine whether the suppressed sites were also sensitive to auditory feedback alterations. Indeed, overlapping sites showed enhanced responses to feedback, indicating sensitivity. Importantly, there was a strong correlation between the degree of auditory suppression and feedback sensitivity, suggesting suppression might be a key mechanism that underlies speech monitoring. Further, we found that when participants produced speech with simultaneous auditory feedback, posterior STG was selectively activated if participants were engaged in a DAF paradigm, suggesting that increased attentional load can modulate auditory feedback sensitivity. 
    more » « less
  4. null (Ed.)
    This paper analyzes the musical surrogate encoding of Seenku (Mande, Burkina Faso) syllable structure on the balafon, a resonator xylophone used by the Sambla ethnicity. The elements of syllable structure that are encoded include vowel length, sesquisyllabicity, diphthongs, and nasal codas. Certain elements, like vowel length and sesquisyllabicity, involve categorical encoding through conscious rules of surrogate speech, while others, like diphthongs and nasal codas, vary between being treated as simple or complex. Beyond these categorical encodings, subtler aspects of rhythmic structure find their way into the speech surrogate through durational differences; these include duration differences from phonemic distinctions like vowel length in addition to subphonemic differences due to phrasal position. I argue that these subconscious durational differences arise from a “phonetic filter”, which mediates between the musician’s inner voice and their non-verbal behavior. Specifically, syllables encoded on the balafon may be timed according to the perceptual center (p-center) of natural spoken rhythm, pointing to a degree of phonetic detail in a musician’s inner speech. 
    more » « less
  5. Acoustic analysis of typically developing elementary school-aged (prepubertal) children’s speech has been primarily performed on cross-sectional data in the past. Few studies have examined longitudinal data in this age group. For this presentation, we analyze the developmental changes in the acoustic properties of children’s speech using data collected longitudinally over four years (from first grade to fourth grade). Four male and four female children participated in this study. Data were collected once every year for each child. Using these data, we measured the four-year development of subglottal acoustics (first two subglottal resonances) and vowel acoustics (first four formants and fundamental frequency). Subglottal acoustic measurements are relatively independent of context, and average values were obtained for each child in each year. Vowel acoustics measurements were made for seven vowels (i, ɪ, ɛ, æ, ʌ, ɑ, u), each occurring in two different words in the stressed syllable. We investigated the correlations between the children’s subglottal acoustics, vowel acoustics, and growth-related variables such as standing height, sitting height, and chronological age. Gender-, vowel-, and child-specific analyses were carried out in order to shed light on how typically developing speech acoustics depend on such variables. [Work supported, in part, by the NSF.] 
    more » « less