skip to main content


Title: Comparison of dynamic stall on an airfoil undergoing sinusoidal and VAWT-shaped pitch motions
Abstract The aerodynamics of vertical axis wind turbines (VAWTs) are inherently unsteady because the blades experience large angle of attack variations throughout a full turbine revolution. At low tip speed ratios, this can lead to a phenomenon known as dynamic stall. To better characterise the unsteady aerodynamics and represent them in models and simulations, data from studies of individual static or pitching airfoils are often applied to VAWT blades. However, these studies often involve sinusoidally pitching airfoils, whereas the pitching motions experienced by VAWTs are more complex. Here, the pressures and forces on an airfoil undergoing VAWT-shaped pitch motions corresponding to various tip speed ratios are compared to those of a sinusoidally pitching airfoil in order to assess whether a sinusoidal motion represents a reasonable approximation of the motions of a VAWT blade. While the lift development induced by the sinusoidal motion yields good agreement with that induced by the VAWT-shaped motion at the higher tip speed ratios, notable discrepancies exist at the lower tip speed ratios, where the VAWT motion itself deviates more from the sinusoid. Comparison with sinusoidal motions at reduced frequencies corresponding to the upstroke or downstroke of the VAWT-shaped motion yield better agreement in terms of the angle of stall onset.  more » « less
Award ID(s):
1652583
NSF-PAR ID:
10338836
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2265
Issue:
3
ISSN:
1742-6588
Page Range / eLocation ID:
032006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Effect of airfoil thickness on onset of dynamic stall is investigated using large eddy simulations at chord-based Reynolds number of 200 000. Four symmetric NACA airfoils of thickness-to-chord ratios of 9 %, 12 %, 15 % and 18 % are studied. The three-dimensional Navier–Stokes solver, FDL3DI is used with a sixth-order compact finite difference scheme for spatial discretization, second-order implicit time integration and discriminating filters to remove unresolved wavenumbers. A constant-rate pitch-up manoeuver is studied with the pitching axis located at the airfoil quarter chord. Simulations are performed in two steps. In the first step, the airfoil is kept static at a prescribed angle of attack ( $=4^{\circ }$ ). In the second step, a ramp function is used to smoothly increase the pitch rate from zero to the selected value and then the pitch rate is held constant until the angle of attack goes past the lift-stall point. The solver is verified against experiments for flow over a static NACA 0012 airfoil. Static simulation results of all airfoil geometries are also compared against XFOIL predictions with a generally favourable agreement. FDL3DI predicts two-stage transition for thin airfoils (9 % and 12 %), which is not observed in the XFOIL results. The dynamic simulations show that the onset of dynamic stall is marked by the bursting of the laminar separation bubble (LSB) in all the cases. However, for the thickest airfoil tested, the reverse flow region spreads over most of the airfoil and reaches the LSB location immediately before the LSB bursts and dynamic stall begins, suggesting that the stall could be triggered by the separated turbulent boundary layer. The results suggest that the boundary between different classifications of dynamic stall, particularly leading edge stall versus trailing edge stall, is blurred. The dynamic-stall onset mechanism changes gradually from one to the other with a gradual change in some parameters, in this case, airfoil thickness. 
    more » « less
  2. null (Ed.)
    To design and optimize arrays of vertical-axis wind turbines (VAWTs) for maximal power density and minimal wake losses, a careful consideration of the inherently three-dimensional structure of the wakes of these turbines in real operating conditions is needed. Accordingly, a new volumetric particle-tracking velocimetry method was developed to measure three-dimensional flow fields around full-scale VAWTs in field conditions. Experiments were conducted at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA, using six cameras and artificial snow as tracer particles. Velocity and vorticity measurements were obtained for a 2 kW turbine with five straight blades and a 1 kW turbine with three helical blades, each at two distinct tip-speed ratios and at Reynolds numbers based on the rotor diameter $D$ between $1.26 \times 10^{6}$ and $1.81 \times 10^{6}$ . A tilted wake was observed to be induced by the helical-bladed turbine. By considering the dynamics of vortex lines shed from the rotating blades, the tilted wake was connected to the geometry of the helical blades. Furthermore, the effects of the tilted wake on a streamwise horseshoe vortex induced by the rotation of the turbine were quantified. Lastly, the implications of this dynamics for the recovery of the wake were examined. This study thus establishes a fluid-mechanical connection between the geometric features of a VAWT and the salient three-dimensional flow characteristics of its near-wake region, which can potentially inform both the design of turbines and the arrangement of turbines into highly efficient arrays. 
    more » « less
  3. Effects of helical-shaped blades on the flow characteristics and power production of finite-length wind farms composed of vertical-axis wind turbines (VAWTs) are studied numerically using large-eddy simulation (LES). Two helical-bladed VAWTs (with opposite blade twist angles) are studied against one straight-bladed VAWT in different array configurations with coarse, intermediate, and tight spacings. Statistical analysis of the LES data shows that the helical-bladed VAWTs can improve the mean power production in the fully developed region of the array by about 4.94%–7.33% compared with the corresponding straight-bladed VAWT cases. The helical-bladed VAWTs also cover the azimuth angle more smoothly during the rotation, resulting in about 47.6%–60.1% reduction in the temporal fluctuation of the VAWT power output. Using the helical-bladed VAWTs also reduces the fatigue load on the structure by significantly reducing the spanwise bending moment (relative to the bottom base), which may improve the longevity of the VAWT system to reduce the long-term maintenance cost.

     
    more » « less
  4. This paper presents a state-variable formulation to model and simulate the 2D unsteady aerodynamics of an airfoil undergoing arbitrary motion kinematics. The model builds upon a large-angle unsteady aerodynamic formulation in which the airfoil is represented using a lumped vortex element (LVE) model. The airfoil is divided into several panels, with a bound vortex placed on each panel. At any time instant, the bound-vortex strengths are determined by employing zero-normal-flow conditions at the control points located on each panel. The vorticity shed from the trailing edge of the airfoil is modeled using discrete vortices that move freely in the flow field. The required state variables are first identified, and all the time derivative terms of the state variables are then derived to form the final state-variable representation. Trailing-edge vortex shedding is incorporated using the Kelvin condition. The final state variable equation can be solved as an ordinary differential equation using any standard ODE-solving algorithm. Three case studies are presented here to evaluate the predictions of the model. In the cases considered here, the airfoil undergoes various unsteady plunge motions. The aerodynamic load history and the wake patterns are compared against the results from the low-order model developed by Narsipur et al. [1] in previous research. The comparison shows that the current state-variable formulation captures the unsteady flow characteristics and the aerodynamic load in good agreement with the reference results. 
    more » « less
  5. The transient pressure field around a moderately thick airfoil is studied as it undergoes ramp-type pitching motions at high Reynolds numbers and low Mach numbers. A unique set of laboratory experiments were performed in a high-pressure wind tunnel to investigate dynamic stall at chord Reynolds numbers in the range of $0.5\times 10^6\leq Re _c\leq 5.5\times 10^6$ in the absence of compressibility effects. In addition to variations of mean angle and amplitude, pitching manoeuvres at reduced frequencies in the range of $0.01\leq k\leq 0.40$ were studied by means of surface-pressure measurements. Independently of the parameter variations, all test cases exhibit a nearly identical stall behaviour characterized by a gradual trailing-edge stall, in which the dynamic stall vortex forms approximately at mid-chord. The location of the pitching window with respect to the Reynolds-number-dependent static stall angle is found to define the temporal development of the stall process. The time until stall onset is characterized by a power law, where a small excess of the static stall angle results in a drastically prolonged stall delay. The reduced frequency exhibits a decrease in impact on the stall development in the case of angle-limited pitching manoeuvres. Beyond a critical reduced frequency, both load magnitudes and vortex evolution become reduced frequency independent and instead depend on the geometry of the motion and the convective time scale, respectively. Overall, the characteristics of vortex evolution induced by dynamic stall show remarkable similarities to the framework of optimal vortex formation reported in Gharib et al. ( J. Fluid Mech. , vol. 360, 1998, pp. 121–140). The data from this study are publicly available at https://doi.org/10.34770/b3vq-sw14 . 
    more » « less