skip to main content


Title: Near-wake structure of full-scale vertical-axis wind turbines
To design and optimize arrays of vertical-axis wind turbines (VAWTs) for maximal power density and minimal wake losses, a careful consideration of the inherently three-dimensional structure of the wakes of these turbines in real operating conditions is needed. Accordingly, a new volumetric particle-tracking velocimetry method was developed to measure three-dimensional flow fields around full-scale VAWTs in field conditions. Experiments were conducted at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA, using six cameras and artificial snow as tracer particles. Velocity and vorticity measurements were obtained for a 2 kW turbine with five straight blades and a 1 kW turbine with three helical blades, each at two distinct tip-speed ratios and at Reynolds numbers based on the rotor diameter $D$ between $1.26 \times 10^{6}$ and $1.81 \times 10^{6}$ . A tilted wake was observed to be induced by the helical-bladed turbine. By considering the dynamics of vortex lines shed from the rotating blades, the tilted wake was connected to the geometry of the helical blades. Furthermore, the effects of the tilted wake on a streamwise horseshoe vortex induced by the rotation of the turbine were quantified. Lastly, the implications of this dynamics for the recovery of the wake were examined. This study thus establishes a fluid-mechanical connection between the geometric features of a VAWT and the salient three-dimensional flow characteristics of its near-wake region, which can potentially inform both the design of turbines and the arrangement of turbines into highly efficient arrays.  more » « less
Award ID(s):
1802476
NSF-PAR ID:
10248840
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
914
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Turbulent wake flows behind helical- and straight-bladed vertical axis wind turbines (VAWTs) in boundary layer turbulence are numerically studied using the large-eddy simulation (LES) method combined with the actuator line model. Based on the LES data, systematic statistical analyses are performed to explore the effects of blade geometry on the characteristics of the turbine wake. The time-averaged velocity fields show that the helical-bladed VAWT generates a mean vertical velocity along the center of the turbine wake, which causes a vertical inclination of the turbine wake and alters the vertical gradient of the mean streamwise velocity. Consequently, the intensities of the turbulent fluctuations and Reynolds shear stresses are also affected by the helical-shaped blades when compared with those in the straight-bladed VAWT case. The LES results also show that reversing the twist direction of the helical-bladed VAWT causes the spatial patterns of the turbulent wake flow statistics to be reversed in the vertical direction. Moreover, the mass and kinetic energy transports in the turbine wakes are directly visualized using the transport tube method, and the comparison between the helical- and straight-bladed VAWT cases show significant differences in the downstream evolution of the transport tubes. 
    more » « less
  2. Abstract The variety of configurations for vertical-axis wind turbines (VAWTs) make the development of universal scaling relationships for even basic performance parameters difficult. Rotor geometry changes can be characterized using the concept of solidity, defined as the ratio of solid rotor area to the swept area. However, few studies have explored the effect of this parameter at full-scale conditions due to the challenge of matching both the non-dimensional rotational rate (or tip speed ratio) and scale (or Reynolds number) in conventional wind tunnels. In this study, experiments were conducted on a VAWT model using a specialized compressed-air wind tunnel where the density can be increased to over 200 times atmospheric air. The number of blades on the model was altered to explore how solidity affects performance while keeping other geometric parameters, such as the ratio of blade chord to rotor radius, the same. These data were collected at conditions relevant to the field-scale VAWT but in the controlled environment of the lab. For the three highest solidity rotors (using the most blades), performance was found to depend similarly on the Reynolds number, despite changes in rotational effects. This result has direct implications for the modelling and design of high-solidity field-scale VAWTs. 
    more » « less
  3. A field campaign was carried out to investigate ice accretion features on large turbine blades (50 m in length) and to assess power output losses of utility-scale wind turbines induced by ice accretion. After a 30-h icing incident, a high-resolution digital camera carried by an unmanned aircraft system was used to capture photographs of iced turbine blades. Based on the obtained pictures of the frozen blades, the ice layer thickness accreted along the blades’ leading edges was determined quantitatively. While ice was found to accumulate over whole blade spans, outboard blades had more ice structures, with ice layers reaching up to 0.3 m thick toward the blade tips. With the turbine operating data provided by the turbines’ supervisory control and data acquisition systems, icing-induced power output losses were investigated systematically. Despite the high wind, frozen turbines were discovered to rotate substantially slower and even shut down from time to time, resulting in up to 80% of icing-induced turbine power losses during the icing event. The research presented here is a comprehensive field campaign to characterize ice accretion features on full-scaled turbine blades and systematically analyze detrimental impacts of ice accumulation on the power generation of utility-scale wind turbines. The research findings are very useful in bridging the gaps between fundamental icing physics research carried out in highly idealized laboratory settings and the realistic icing phenomena observed on utility-scale wind turbines operating in harsh natural icing conditions. 
    more » « less
  4. Abstract

    Conformal mapping techniques have been used in many applications in the two-dimensional environments of engineering and physics, especially in the two-dimensional incompressible flow field that was introduced by Prandtl and Tietjens. These methods show reasonable results in the case of comprehensive analysis of the local coefficients of complex airfoils. The mathematical form of conformal mapping always locally preserves angles of the complex functions but it may change the length of the complex model. This research is based on the design of turbine blades as hydrofoils divided into different individual hydrofoils with decreasing thickness from root to tip. The geometric shapes of these hydrofoils come from the original FX77W121 airfoil shape and from interpolating between the FX77W121, FX77W153, and FX77W258 airfoil shapes. The last three digits of this airfoil family approximate the thickness ratio times 1000 (FX77153 => 15.3 % thickness ratio). Of the different airfoil shapes specified for the optimal rotor, there are 23 unique shapes.[15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 28] This study describes the advantage of using at least one complex variable technique of transformation conformal mapping in two dimensions.

    Conformal mapping techniques are used to form a database for sectional lift and drag coefficients based on turbine blade design to be used in Blade Element Momentum (BEM) theory to predict the performance of a three bladed single rotor horizontal axis ocean current turbine (1.6-meter diameter) by considering the characteristics of the sea-water. In addition, by considering the fact that in the real ocean, the underwater ocean current turbines encounter different velocities, the maximum brake power will be investigated for different incoming current velocities. The conformal mapping technique is used to calculate the local lift coefficients of different hydrofoils with respect to different angles of attack: −180 ≤ AOA ≤ +180. These results will be compared to those from other methods obtained recently by our research group. This method considers the potential flow analysis module that follows a higher-order panel method based on the geometric properties of each hydrofoil cross section. The velocity and pressure fields are obtained directly by the applications of Bernoulli’s principle, then the lift coefficients are calculated from the results of the integration of the pressure field along the hydrofoil surface for any angle of attack. Ultimately, the results of this research will be used for further investigation of the design and construction of a small-scale experimental ocean current turbine to be tested in the towing tank at the University of New Orleans.

     
    more » « less
  5. Effects of helical-shaped blades on the flow characteristics and power production of finite-length wind farms composed of vertical-axis wind turbines (VAWTs) are studied numerically using large-eddy simulation (LES). Two helical-bladed VAWTs (with opposite blade twist angles) are studied against one straight-bladed VAWT in different array configurations with coarse, intermediate, and tight spacings. Statistical analysis of the LES data shows that the helical-bladed VAWTs can improve the mean power production in the fully developed region of the array by about 4.94%–7.33% compared with the corresponding straight-bladed VAWT cases. The helical-bladed VAWTs also cover the azimuth angle more smoothly during the rotation, resulting in about 47.6%–60.1% reduction in the temporal fluctuation of the VAWT power output. Using the helical-bladed VAWTs also reduces the fatigue load on the structure by significantly reducing the spanwise bending moment (relative to the bottom base), which may improve the longevity of the VAWT system to reduce the long-term maintenance cost.

     
    more » « less