skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Systematic evaluating and modeling of SARS-CoV-2 UVC disinfection
Abstract The ongoing COVID-19 global pandemic has necessitated evaluating various disinfection technologies for reducing viral transmission in public settings. Ultraviolet (UV) radiation can inactivate pathogens and viruses but more insight is needed into the performance of different UV wavelengths and their applications. We observed greater than a 3-log reduction of SARS-CoV-2 infectivity with a dose of 12.5 mJ/cm 2 of 254 nm UV light when the viruses were suspended in PBS, while a dose of 25 mJ/cm 2 was necessary to achieve a similar reduction when they were in an EMEM culture medium containing 2%(v/v) FBS, highlighting the critical effect of media in which the virus is suspended, given that SARS-CoV-2 is always aerosolized when airborne or deposited on a surface. It was found that SARS-CoV-2 susceptibility (a measure of the effectiveness of the UV light) in a buffer such as PBS was 4.4-fold greater than that in a cell culture medium. Furthermore, we discovered the attenuation of UVC disinfection by amino acids, vitamins, and niacinamide, highlighting the importance of determining UVC dosages under a condition close to aerosols that wrap the viruses. We developed a disinfection model to determine the effect of the environment on UVC effectiveness with three different wavelengths, 222 nm, 254 nm, and 265 nm. An inverse correlation between the liquid absorbance and the viral susceptibility was observed. We found that 222 nm light was most effective at reducing viral infectivity in low absorbing liquids such as PBS, whereas 265 nm light was most effective in high absorbing liquids such as cell culture medium. Viral susceptibility was further decreased in N95 masks with 222 nm light being the most effective. The safety of 222 nm was also studied. We detected changes to the mechanical properties of the stratum corneum of human skins when the 222 nm accumulative exposure exceeded 50 J/cm 2 .The findings highlight the need to evaluate each UV for a given application, as well as limiting the dose to the lowest dose necessary to avoid unnecessary exposure to the public.  more » « less
Award ID(s):
2031223
PAR ID:
10338918
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dudley, Edward G. (Ed.)
    ABSTRACT Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC’s action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions. 
    more » « less
  2. After decades of UV disinfection practice and numerous studies on the potential for pathogens to undergo dark or photo-repair after UV exposure, recent advances in UV light emitting diode (LED) technologies prompt renewed attention to bacterial reactivation and regrowth processes after UV exposure. The aspect of photorepair conditions warrants particular attention, because even studies on conventional mercury vapor lamps have not sufficiently characterized these parameters. Wastewater encounters a wide range of environmental conditions upon discharge ( e.g. , solar irradiation and dissolved organics) which may affect repair processes and ultimately lead to overestimations of pathogen removal. Escherichia coli was used here to investigate the impacts of changing reactivation conditions after UV 254 and UV 278 irradiation. UV 254 and UV 278 doses of 13.75 ± 0.4 mJ cm −2 and 28.3 ± 0.8 mJ cm −2 were required to induce a 3.0 log inactivation of E. coli , respectively. Specifically, photoreactivation conditions were varied across dissolved organic matter (DOM) content and photoreactivation wavelengths and intensities. Photoreactivation achieved higher log recoveries than dark repair, ranging from 0.8 to 1.8 log differences, but a secondary disinfection effect occurred under UVA irradiation. During photoreactivation, humic acid inhibited the initial repair of UV 278 -dosed E. coli , but culture media enhanced recovery for both dosage wavelengths. Photoreactivation profiles under UV 395 , UV 365 , and visible light depended on both fluence and time, with more regrowth observed upon exposure to visible light and the least under 365 nm. The susceptibility of E. coli to UVA was increased by prior exposure to UVC. 
    more » « less
  3. null (Ed.)
    Ultraviolet (UV) devices emitting UVC irradiation (200− 280 nm) have proven to be effective for virus disinfection, especially on surfaces and in air, due to their rapid effectiveness and limited to no material corrosion. Numerous studies of UV-induced inactivation focused on nonenveloped viruses. Little is known about UVC action on enveloped viruses across UVC wavelengths. In this study, we determined inactivation efficiencies of two coronaviruses (ssRNA) and an enveloped dsRNA bacteriophage surrogate in buffered aqueous solution (pH 7.4) using five commonly available UVC devices that uniquely emit light at different wavelengths spanning 222 nm emitting krypton chloride (KrCl*) excimers to 282 nm emitting UVC LEDs. Our results show that enveloped viruses can be effectively inactivated using UVC devices, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate) for all three enveloped viruses. The coronaviruses exhibited similar sensitivities to UV irradiation across the UVC range, whereas the bacteriophage surrogate was much more resistant and exhibited significantly higher sensitivity to the Far UVC (<230 nm) irradiation. This study provides necessary information and guidance for using UVC devices for enveloped virus disinfection, which may help control virus transmission in public spaces during the ongoing COVID-19 pandemic and beyond. 
    more » « less
  4. Hemati, Sara (Ed.)
    The application of 222 nm light from KrCl excimer lamps (GUV222 or far-UVC) is a promising approach to reduce the indoor transmission of airborne pathogens, including the SARS-CoV-2 virus. GUV222 inactivates airborne pathogens and is believed to be relatively safe for human skin and eye exposure. However, UV light initiates photochemical reactions which may negatively impact indoor air quality. We conducted a series of experiments to assess the formation of ozone ( O 3 ), and resulting formation of secondary organic aerosols (SOA), induced by commercial far-UVC devices in an office environment (small conference room) with an air exchange rate of 1.3   h 1 . We studied scenarios with a single far-UVC lamp, corresponding to the manufacturer’s recommendations for disinfection of a space that size, and with four far-UVC lamps, to test conditions of greater far-UVC fluence. The single lamp did not significantly impact O 3 or fine particulate matter levels in the room. Consistent with previous studies in the literature, the higher far-UVC fluences lead to increases in O 3 of 5 to 10 ppb above background, and minor increases in particulate matter (16% ± 10 % increase in particle number count). The use of far-UVC at minimum intensities required for disinfection, and in conjunction with adequate ventilation rates (e.g. ANSI/ASHRAE recommendations), may allow the reduction of airborne pathogen levels while minimizing the formation of air pollutants in furnished indoor environments. 
    more » « less
  5. A Cold Atmospheric Plasma (CAP) apparatus was designed and developed for SARS-CoV-2 killing as evaluated by pseudotyped viral infectivity assays. The reactive species generated by the plasma system was fully characterized by using Optical Emission Spectroscopy (OES) measurement under given conditions such as plasma power, flow rate, and treatment time. A variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) were identified from plasma plume with energies of 15–72 eV in the frequency range between 500–1000 nm. Systematic virus killing experiments were carried out, and the efficacy of CAP treatment in reducing SARS-CoV-2 viral infectivity was significant following treatment for 8 s, with further enhancement of killing upon longer exposures of 15–120 s. We correlated killing efficacy with the reactive species in terms of type, intensity, energy, and frequency. These experimental results demonstrate effective cold plasma virus killing via ROS and RNS under ambient conditions. 
    more » « less