Abstract In the last decade, the interactions among histone modifications and DNA methylation and their effect on the DNA structure, i.e., chromatin state, have been identified as key mediators for the maintenance of cell identity, defined as epigenetic cell memory. In this paper, we determine how the positive feedback loops generated by the auto- and cross-catalysis among repressive modifications affect the temporal duration of the cell identity. To this end, we conduct a stochastic analysis of a recently published chromatin modification circuit considering two limiting behaviors: fast erasure rate of repressive histone modifications or fast erasure rate of DNA methylation. In order to perform this mathematical analysis, we first show that the deterministic model of the system is a singular singularly perturbed (SSP) system and use a model reduction approach for SSP systems to obtain a reduced one-dimensional model. We thus analytically evaluate the reduced system’s stationary probability distribution and the mean switching time between active and repressed chromatin states. We then add a computational study of the original reaction model to validate and extend the analytical findings. Our results show that the absence of DNA methylation reduces the bias of the system’s stationary probability distribution toward the repressed chromatin state and the temporal duration of this state’s memory. In the absence of repressive histone modifications, we also observe that the time needed to reactivate a repressed gene with an activating input is less stochastic, suggesting that repressive histone modifications specifically contribute to the highly variable latency of state reactivation.
more »
« less
Epigenetic cell memory: The gene’s inner chromatin modification circuit
Epigenetic cell memory allows distinct gene expression patterns to persist in different cell types despite a common genotype. Although different patterns can be maintained by the concerted action of transcription factors (TFs), it was proposed that long-term persistence hinges on chromatin state. Here, we study how the dynamics of chromatin state affect memory, and focus on a biologically motivated circuit motif, among histones and DNA modifications, that mediates the action of TFs on gene expression. Memory arises from time-scale separation among three circuit’s constituent processes: basal erasure, auto and cross-catalysis, and recruited erasure of modifications. When the two latter processes are sufficiently faster than the former, the circuit exhibits bistability and hysteresis, allowing active and repressed gene states to coexist and persist after TF stimulus removal. The duration of memory is stochastic with a mean value that increases as time-scale separation increases, but more so for the repressed state. This asymmetry stems from the cross-catalysis between repressive histone modifications and DNA methylation and is enhanced by the relatively slower decay rate of the latter. Nevertheless, TF-mediated positive autoregulation can rebalance this asymmetry and even confers robustness of active states to repressive stimuli. More generally, by wiring positively autoregulated chromatin modification circuits under time scale separation, long-term distinct gene expression patterns arise, which are also robust to failure in the regulatory links.
more »
« less
- PAR ID:
- 10338932
- Editor(s):
- Herrmann, Carl
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 18
- Issue:
- 4
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1009961
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Epigenetic cell memory (ECM), the inheritance of gene expression patterns without changes in genetic sequence, is a critical property of multi-cellular organisms. Chromatin state, as dictated by histone covalent modifications, has recently appeared as a mediator of ECM. In this paper, we conduct a stochastic analysis of the histone modification circuit that controls chromatin state to determine key biological parameters that affect ECM. Specifically, we derive a one-dimensional Markov chain model of the circuit and analytically evaluate both the stationary probability distribution of chromatin state and the mean time to switch between active and repressed chromatin states. We then validate our analytical findings using stochastic simulations of the original higher dimensional circuit reaction model. Our analysis shows that as the speed of basal decay of histone modifications decreases compared to the speed of autocatalysis, the stationary probability distribution becomes bimodal and increasingly concentrated about the active and repressed chromatin states. Accordingly, the switching time between active and repressed chromatin states becomes larger. These results indicate that time scale separation among key constituent processes of the histone modification circuit controls ECM.more » « less
-
Epigenetic cell memory (ECM),the inheritance of gene expression patterns without changes in genetic sequence,is acritical property of multi-cellular organisms.Chromatin state, as dictated by histone covalent modifications, has recently appeared as a mediator of ECM. In this paper,we conduct a stochastic analysis of the histone modification circuit that controls chromatin state to determine key biological parameters that affect ECM. Specifically, we derive a one-dimensional Markov chain model of the circuit and analytically evaluate both the stationary probability distribution of chromatin state and the mean time to switch between active and repressed chromatin states.We then validate our analytical findings using stochastic simulations of the original higher dimen- sional circuit reaction model.Our analysis shows that as the speed of basal decay of histone modifications decreases compared to the speed of autocatalysis,the stationary probability distribution becomes bimodal and increasingly concentrated about the active and repressed chromatin states. Accordingly, the switching time between active and repressed chromatin states becomes larger.These results indicate that timescale separation among key constituent processes of the histone modification circuit controls ECM.more » « less
-
In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures, thereby regulating gas exchange. Chromatin structure controls transcription factor (TF) access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remains unknown. Here, we isolate guard cell nuclei fromArabidopsis thalianaplants to examine whether the physiological signals, ABA and CO2(carbon dioxide), regulate guard cell chromatin during stomatal movements. Our cell type–specific analyses uncover patterns of chromatin accessibility specific to guard cells and define cis-regulatory sequences supporting guard cell–specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell type specificity. DNA motif analyses uncover binding sites for distinct TFs enriched in ABA-induced and ABA-repressed chromatin. We identify the Abscisic Acid Response Element (ABRE) Binding Factor (ABF) bZIP-type TFs that are required for ABA-triggered chromatin opening in guard cells and roots and implicate the inhibition of a clade of bHLH-type TFs in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2induce distinct programs of chromatin remodeling, whereby elevated atmospheric CO2had only minimal impact on chromatin dynamics. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.more » « less
-
The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression.more » « less
An official website of the United States government

