skip to main content


Title: Divergent stereochemical outcomes in the insertion of donor/donor carbenes into the C–H bonds of stereogenic centers
Intramolecular C–H insertions with donor/donor dirhodium carbenes provide a concise and highly stereoselective method to set two contiguous stereocenters in a single step. Herein, we report the insertion of donor/donor carbenes into stereogenic carbon centers allowing access to trisubstituted benzodihydrofurans in a single step. This study illuminates, for the first time, the stereochemical impact on the carbene center and delineates the structural factors that enable control over both stereogenic centers. Sterically bulky, highly activated C–H insertion centers exhibit high substrate control yielding a single diastereomer and a single enantiomer of product regardless of the catalyst used. Less bulky, less activated C–H insertion centers exhibit catalyst control over the diastereomeric ratio (dr), where a single enantiomer of each diastereomer is observed with high selectivity. A combination of experimental studies and DFT calculations was used to elucidate the origin of these results. First, hydride transfer from the stereogenic insertion site proceeds with high stereoselectivity to the carbene center, thus determining the absolute configuration of the product. Second, the short lived zwitterionic intermediate can diaster-eoselectively ring-close by a hitherto unreported S E 2 mechanism that is either controlled by the substrate or the catalyst. These results demonstrate that donor/donor carbenes undergo uniquely stereoselective reactions that originate from a stepwise reaction mechanism, in contrast to the analogous concerted reactions of carbenes with one or more electron-withdrawing groups attached.  more » « less
Award ID(s):
1856416
PAR ID:
10338953
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
13
Issue:
4
ISSN:
2041-6520
Page Range / eLocation ID:
1030 to 1036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Regio‐ and stereoselective distal allylic/benzylic C−H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N‐sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site‐selective functionalization of less activated allylic and benzylic C−H bonds even in the presence of electronically preferred C−H bonds located α to oxygen. The dirhodium catalyst Rh2(S‐NTTL)4is the most effective chiral catalyst for triazole‐derived carbene transformations, whereas Rh2(S‐TPPTTL)4works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ‐functionalized allyl silyl ethers with high diastereo‐ and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4‐disubstitutedl‐proline scaffold.

     
    more » « less
  2. Abstract

    Regio‐ and stereoselective distal allylic/benzylic C−H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N‐sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site‐selective functionalization of less activated allylic and benzylic C−H bonds even in the presence of electronically preferred C−H bonds located α to oxygen. The dirhodium catalyst Rh2(S‐NTTL)4is the most effective chiral catalyst for triazole‐derived carbene transformations, whereas Rh2(S‐TPPTTL)4works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ‐functionalized allyl silyl ethers with high diastereo‐ and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4‐disubstitutedl‐proline scaffold.

     
    more » « less
  3. Abstract

    Panowamycins are a group of isochroman‐based natural products first isolated fromStreptomycessp. K07‐0010 in 2012 by Satoshi Ōmura and co‐workers that exhibit modest anti‐trypanosomal activity. Herein we demonstrate the first syntheses of these natural products and their epimers. Stereoselective dirhodium‐catalyzed C−H insertion reactions with a donor/donor carbene construct the substituted isochroman core in the key bond‐forming step. The syntheses are completed without the use of protecting groups and feature a late‐stage Wacker oxidation. Incongruent NMR spectra between natural and synthetic samples revealed the structural misassignment of panowamycin A and veramycin F. Computational NMR studies suggested panowamycin A to be an alternate diastereomer, which was confirmed by synthesizing this isomer. Concurrent with this work, in 2021 Mahmud and co‐workers came to the same conclusion with an updated NMR analysis of panowamycin A. In a divergent, asymmetric sequence, we report the synthesis of panowamycin A, panowamycin B, TM‐135, and veramycin F.

     
    more » « less
  4. Abstract

    Panowamycins are a group of isochroman‐based natural products first isolated fromStreptomycessp. K07‐0010 in 2012 by Satoshi Ōmura and co‐workers that exhibit modest anti‐trypanosomal activity. Herein we demonstrate the first syntheses of these natural products and their epimers. Stereoselective dirhodium‐catalyzed C−H insertion reactions with a donor/donor carbene construct the substituted isochroman core in the key bond‐forming step. The syntheses are completed without the use of protecting groups and feature a late‐stage Wacker oxidation. Incongruent NMR spectra between natural and synthetic samples revealed the structural misassignment of panowamycin A and veramycin F. Computational NMR studies suggested panowamycin A to be an alternate diastereomer, which was confirmed by synthesizing this isomer. Concurrent with this work, in 2021 Mahmud and co‐workers came to the same conclusion with an updated NMR analysis of panowamycin A. In a divergent, asymmetric sequence, we report the synthesis of panowamycin A, panowamycin B, TM‐135, and veramycin F.

     
    more » « less
  5. Abstract

    Select transition metal compounds catalyze metal vinylcarbene formation from cyclopropenes, and their documented reactions include both intermolecular and intramolecular C−H insertion and cyclopropanation, as well as [3+3]‐cycloaddition. Although known to undergo carbene‐like transformations for decades, the uses of cyclopropenes as reactive alternatives to diazo compounds under mild conditions has been limited. However, recently developed donor‐acceptor cyclopropenes that are conveniently accessed from enoldiazoacetates and enoldiazoacetamides are effective metallo‐vinylcarbene precursors. They provide entry to highly stereoselective metal carbene transformations under reaction conditions that are milder than those required for dinitrogen extrusion from diazo compounds.

     
    more » « less