skip to main content


Title: On the moduli spaces of 4d N=3 SCFTs I: triple special Kähler structure
We initiate a systematic analysis of moduli spaces of vacua of four dimensional =3 SCFTs. Our analysis is based on the one hand on the properties of =3 chiral rings --- which we review in detail and contrast with chiral rings of theories with less supersymmetry --- and on the other hand on constraints coming from low-energy supersymmetry. This leads us to introduce a new type of geometric structure, which characterizes =3 SCFT moduli spaces, and that we call triple special Kähler (TSK). A rank-n TSK moduli space has complex dimension 3n, and is singular at complex co-dimension 3 subspaces where charged states become massless. The structure of singularities defines a stratification of the TSK space in terms of lower-dimensional TSK manifolds.  more » « less
Award ID(s):
1914679
NSF-PAR ID:
10339047
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU( k )/ℤ k , SO(2 k )/ℤ 2 , Sp(2 k )/ℤ 2 , E 6 /ℤ 3 , and E 7 /ℤ 2 for various discrete theta angles, both directly in the gauge theory and also in nonabelian mirrors, extending a classification begun in previous work. We find in each case that there are supersymmetric vacua for precisely one value of the discrete theta angle, and no supersymmetric vacua for other values, hence supersymmetry is broken in the IR for most discrete theta angles. Furthermore, for the one distinguished value of the discrete theta angle for which supersymmetry is unbroken, the theory has as many twisted chiral multiplet degrees of freedom in the IR as the rank. We take this opportunity to further develop the technology of nonabelian mirrors to discuss how the mirror to a G gauge theory differs from the mirror to a G / K gauge theory for K a subgroup of the center of G . In particular, the discrete theta angles in these cases are considerably more intricate than those of the pure gauge theories studied in previous papers, so we discuss the realization of these more complex discrete theta angles in the mirror construction. We find that discrete theta angles, both in the original gauge theory and their mirrors, are intimately related to the description of centers of universal covering groups as quotients of weight lattices by root sublattices. We perform numerous consistency checks, comparing results against basic group-theoretic relations as well as with decomposition, which describes how two-dimensional theories with one-form symmetries (such as pure gauge theories with nontrivial centers) decompose into disjoint unions, in this case of pure gauge theories with quotiented gauge groups and discrete theta angles. 
    more » « less
  2. Abstract

    The Rarita–Schwinger operator is the twisted Dirac operator restricted to$$\nicefrac 32$$32-spinors. Rarita–Schwinger fields are solutions of this operator which are in addition divergence-free. This is an overdetermined problem and solutions are rare; it is even more unexpected for there to be large dimensional spaces of solutions. In this paper we prove the existence of a sequence of compact manifolds in any given dimension greater than or equal to 4 for which the dimension of the space of Rarita–Schwinger fields tends to infinity. These manifolds are either simply connected Kähler–Einstein spin with negative Einstein constant, or products of such spaces with flat tori. Moreover, we construct Calabi–Yau manifolds of even complex dimension with more linearly independent Rarita–Schwinger fields than flat tori of the same dimension.

     
    more » « less
  3. A bstract In this paper we introduce a Hilbert series approach to build the operator basis for a N = 1 supersymmetry theory with chiral superfields. We give explicitly the form of the corrections that remove redundancies due to the equations of motion and integration by parts. In addition, we derive the maps between the correction spaces. This technique allows us to calculate the number of independent operators involving chiral and antichiral superfields to arbitrarily high mass dimension. Using this method, we give several illustrative examples. 
    more » « less
  4. Abstract

    A cognitive map is an internal representation of the external world that guides flexible behavior in a complex environment. Cognitive map theory assumes that relationships between entities can be organized using Euclidean‐based coordinates. Previous studies revealed that cognitive map theory can also be generalized to inferences about abstract spaces, such as social spaces. However, it is still unclear whether humans can construct a cognitive map by combining relational knowledge between discrete entities with multiple abstract dimensions in nonsocial spaces. Here we asked subjects to learn to navigate a novel object space defined by two feature dimensions, price and abstraction. The subjects first learned the rank relationships between objects in each feature dimension and then completed a transitive inferences task. We recorded brain activity using functional magnetic resonance imaging (fMRI) while they performed the transitive inference task. By analyzing the behavioral data, we found that the Euclidean distance between objects had a significant effect on response time (RT). The longer the one‐dimensional rank distance and two‐dimensional (2D) Euclidean distance between objects the shorter the RT. The task‐fMRI data were analyzed using both univariate analysis and representational similarity analysis. We found that the hippocampus, entorhinal cortex, and medial orbitofrontal cortex were able to represent the Euclidean distance between objects in 2D space. Our findings suggest that relationship inferences between discrete objects can be made in a 2D nonsocial space and that the neural basis of this inference is related to cognitive maps.

     
    more » « less
  5. Chiossi, Simon ; Fino, Anna ; Musso, Emilio ; Podesta, Fabio ; Vezzoni, Luigi (Ed.)
    A theorem of Kuranishi (Ann Math 75(2):536–577, 1962) tells us that the moduli space of complex structures on any smooth compact manifold is always locally a finite-dimensional space. Globally, however, this is simply not true; we display examples in which the moduli space contains a sequence of regions for which the local dimension tends to infinity. These examples naturally arise from the twistor theory of hyper-Kähler manifolds. 
    more » « less