skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three-loop helicity amplitudes for diphoton production in gluon fusion
A bstract We present a calculation of the helicity amplitudes for the process gg → γγ in three-loop massless QCD. We employ a recently proposed method to calculate scattering amplitudes in the ’t Hooft-Veltman scheme that reduces the amount of spurious non-physical information needed at intermediate stages of the computation. Our analytic results for the three-loop helicity amplitudes are remarkably compact, and can be efficiently evaluated numerically. This calculation provides the last missing building block for the computation of NNLO QCD corrections to diphoton production in gluon fusion.  more » « less
Award ID(s):
2013859
PAR ID:
10339133
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We compute the three-loop corrections to the helicity amplitudes for q $$ \overline{q} $$ q ¯ → Q $$ \overline{Q} $$ Q ¯ scattering in massless QCD. In the Lorentz decomposition of the scattering amplitude we avoid evanescent Lorentz structures and map the corresponding form factors directly to the physical helicity amplitudes. We reduce the amplitudes to master integrals and express them in terms of harmonic polylogarithms. The renormalised amplitudes exhibit infrared divergences of dipole and quadrupole type, as predicted by previous work on the infrared structure of multileg scattering amplitudes. We derive the finite remainders and present explicit results for all relevant partonic channels, both for equal and different quark flavours. 
    more » « less
  2. A<sc>bstract</sc> We present a calculation of pseudoscalar Higgs production in association with a jet at Next-to-Next-to Leading Order (NNLO) accuracy in QCD. We work in an effective field theory in whichmt→ ∞ resulting in effective operators which couple the pseudoscalar to gluons and (massless) quarks. We have calculated all of the relevant amplitudes for the two-loop, one-loop and tree-level contributions. As a cross-check of our calculation we have re-calculated all of the scalar Higgs plus parton amplitudes and perform a detailed comparison to the literature. In order to regulate the infra-red singularities present at this order we employ theN-jettiness slicing method. In addition to a detailed validation of our calculation at this order we investigate LHC phenomenology for a selection of pseudoscalar Higgs masses. Our results are implemented into the parton-level Monte Carlo code MCFM. 
    more » « less
  3. A bstract We describe the implementation of infrared subtractions for two-loop QCD corrections to quark-antiquark annihilation to electroweak final states. The subtractions are given as form-factor integrands whose integrals are known. The resulting subtracted amplitudes are amenable to efficient numerical integration. Our procedure is based on the universality of infrared singularities and requires a relatively limited set of subtractions, whose number grows as the number of two-loop diagrams, rather than with the number of singular regions of integration. 
    more » « less
  4. null (Ed.)
    A bstract Measurements of electroweak precision observables at future electron-position colliders, such as the CEPC, FCC-ee, and ILC, will be sensitive to physics at multi-TeV scales. To achieve this sensitivity, precise predictions for the Standard Model expectations of these observables are needed, including corrections at the three- and four-loop level. In this article, results are presented for the calculation of a subset of three-loop mixed electroweak-QCD corrections, stemming from diagrams with a gluon exchange and two closed fermion loops. The numerical impact of these corrections is illustrated for a number of applications: the prediction of the W-boson mass from the Fermi constant, the effective weak mixing angle, and the partial and total widths of the Z boson. Two alternative renormalization schemes for the top-quark mass are considered, on-shell and $$ \overline{\mathrm{MS}} $$ MS ¯ . 
    more » « less
  5. We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$$x$$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $$P_z \in \{2.2, 2.6, 3.0\}$$~GeV on the lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unprecedented precision through high statistics in simulations, large-momentum proton matrix elements, and control of excited-state contamination. The resulting distribution is in agreement within $$2\sigma$$ with the latest phenomenological analysis of the spin-dependent experimental data; in particular, $$\Delta \bar{u}(x)>\Delta \bar{d}(x)$$. 
    more » « less