skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coloring the blank slate: Pre-training imparts a hierarchical inductive bias to sequence-to-sequence models
Relations between words are governed by hierarchical structure rather than linear ordering. Sequence-to-sequence (seq2seq) models, despite their success in downstream NLP applications, often fail to generalize in a hierarchy sensitive manner when performing syntactic transformations—for example, transforming declarative sentences into questions. However, syntactic evaluations of seq2seq models have only observed models that were not pre-trained on natural language data before being trained to perform syntactic transformations, in spite of the fact that pre-training has been found to induce hierarchical linguistic generalizations in language models; in other words, the syntactic capabilities of seq2seq models may have been greatly understated. We address this gap using the pre-trained seq2seq models T5 and BART, as well as their multilingual variants mT5 and mBART. We evaluate whether they generalize hierarchically on two transformations in two languages: question formation and passivization in English and German. We find that pre-trained seq2seq models generalize hierarchically when performing syntactic transformations, whereas models trained from scratch on syntactic transformations do not. This result presents evidence for the learnability of hierarchical syntactic information from non-annotated natural language text while also demonstrating that seq2seq models are capable of syntactic generalization, though only after exposure to much more language data than human learners receive.  more » « less
Award ID(s):
2114505
PAR ID:
10339157
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Findings of the Association for Computational Linguistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Learners that are exposed to the same training data might generalize differently due to differing inductive biases. In neural network models, inductive biases could in theory arise from any aspect of the model architecture. We investigate which architectural factors affect the generalization behavior of neural sequence-to-sequence models trained on two syntactic tasks, English question formation and English tense reinflection. For both tasks, the training set is consistent with a generalization based on hierarchical structure and a generalization based on linear order. All architectural factors that we investigated qualitatively affected how models generalized, including factors with no clear connection to hierarchical structure. For example, LSTMs and GRUs displayed qualitatively different inductive biases. However, the only factor that consistently contributed a hierarchical bias across tasks was the use of a tree-structured model rather than a model with sequential recurrence, suggesting that human-like syntactic generalization requires architectural syntactic structure. 
    more » « less
  2. Paraphrasing natural language sentences is a multifaceted process: it might involve replacing individual words or short phrases, local rearrangement of content, or high-level restructuring like topicalization or passivization. Past approaches struggle to cover this space of paraphrase possibilities in an interpretable manner. Our work, inspired by pre-ordering literature in machine translation, uses syntactic transformations to softly "reorder" the source sentence and guide our neural paraphrasing model. First, given an input sentence, we derive a set of feasible syntactic rearrangements using an encoder-decoder model. This model operates over a partially lexical, partially syntactic view of the sentence and can reorder big chunks. Next, we use each proposed rearrangement to produce a sequence of position embeddings, which encourages our final encoder-decoder paraphrase model to attend to the source words in a particular order. Our evaluation, both automatic and human, shows that the proposed system retains the quality of the baseline approaches while giving a substantial increase in the diversity of the generated paraphrases. 
    more » « less
  3. In recent times, sequence-to-sequence (seq2seq) models have gained a lot of popularity and provide stateof-the-art performance in a wide variety of tasks, such as machine translation, headline generation, text summarization, speech-to-text conversion, and image caption generation. The underlying framework for all these models is usually a deep neural network comprising an encoder and a decoder. Although simple encoder–decoder models produce competitive results, many researchers have proposed additional improvements over these seq2seq models, e.g., using an attention-based model over the input, pointer-generation models, and self-attention models. However, such seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently, a completely novel point of view has emerged in addressing these two problems in seq2seq models, leveraging methods from reinforcement learning (RL). In this survey, we consider seq2seq problems from the RL point of view and provide a formulation combining the power of RL methods in decision-making with seq2seq models that enable remembering long-term memories. We present some of the most recent frameworks that combine the concepts from RL and deep neural networks. Our work aims to provide insights into some of the problems that inherently arise with current approaches and how we can address them with better RL models. We also provide the source code for implementing most of the RL models discussed in this paper to support the complex task of abstractive text summarization and provide some targeted experiments for these RL models, both in terms of performance and training time. 
    more » « less
  4. Transfer learning using ImageNet pre-trained models has been the de facto approach in a wide range of computer vision tasks. However, fine-tuning still requires task-specific training data. In this paper, we propose N3 (Neural Networks from Natural Language) - a new paradigm of synthesizing task-specific neural networks from language descriptions and a generic pre-trained model. N3 leverages language descriptions to generate parameter adaptations as well as a new task-specific classification layer for a pre-trained neural network, effectively “fine-tuning” the network for a new task using only language descriptions as input. To the best of our knowledge, N3 is the first method to synthesize entire neural networks from natural language. Experimental results show that N3 can out-perform previous natural-language based zero-shot learning methods across 4 different zero-shot image classification benchmarks. We also demonstrate a simple method to help identify keywords in language descriptions leveraged by N3 when synthesizing model parameters. 
    more » « less
  5. Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on large-scale corpora. Since PLMs capture word semantics in different contexts, the quality of word representations highly depends on word frequency, which usually follows a heavy-tailed distributions in the pre-training corpus. Therefore, the embeddings of rare words on the tail are usually poorly optimized. In this work, we focus on enhancing language model pre-training by leveraging definitions of the rare words in dictionaries (e.g., Wiktionary). To incorporate a rare word definition as a part of input, we fetch its definition from the dictionary and append it to the end of the input text sequence. In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions to enhance language modeling representation with dictionary. We evaluate the proposed Dict-BERT model on the language understanding benchmark GLUE and eight specialized domain benchmark datasets. Extensive experiments demonstrate that Dict-BERT can significantly improve the understanding of rare words and boost model performance on various NLP downstream tasks. 
    more » « less