Abstract We employ individual-based Monte Carlo computer simulations of a stochastic SEIR model variant on a two-dimensional Newman–Watts small-world network to investigate the control of epidemic outbreaks through periodic testing and isolation of infectious individuals, and subsequent quarantine of their immediate contacts. Using disease parameters informed by the COVID-19 pandemic, we investigate the effects of various crucial mitigation features on the epidemic spreading: fraction of the infectious population that is identifiable through the tests; testing frequency; time delay between testing and isolation of positively tested individuals; and the further time delay until quarantining their contacts as well as the quarantine duration. We thus determine the required ranges for these intervention parameters to yield effective control of the disease through both considerable delaying the epidemic peak and massively reducing the total number of sustained infections.
more »
« less
Analysis of individual-level data from 2018–2020 Ebola outbreak in Democratic Republic of the Congo
Abstract The 2018–2020 Ebola virus disease epidemic in Democratic Republic of the Congo (DRC) resulted in 3481 cases (probable and confirmed) and 2299 deaths. In this paper, we use a novel statistical method to analyze the individual-level incidence and hospitalization data on DRC Ebola victims. Our analysis suggests that an increase in the rate of quarantine and isolation that has shortened the infectiousness period by approximately one day during the epidemic’s third and final wave was likely responsible for the eventual containment of the outbreak. The analysis further reveals that the total effective population size or the average number of individuals at risk for the disease exposure in three epidemic waves over the period of 24 months was around 16,000–a much smaller number than previously estimated and likely an evidence of at least partial protection of the population at risk through ring vaccination and contact tracing as well as adherence to strict quarantine and isolation policies.
more »
« less
- Award ID(s):
- 1853587
- PAR ID:
- 10339170
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
COVID-19 is a respiratory disease caused by a recently discovered, novel coronavirus, SARS-COV-2. The disease has led to over 81 million confirmed cases of COVID-19, with close to two million deaths. In the current social climate, the risk of COVID-19 infection is driven by individual and public perception of risk and sentiments. A number of factors influences public perception, including an individual’s belief system, prior knowledge about a disease and information about a disease. In this article, we develop a model for COVID-19 using a system of ordinary differential equations following the natural history of the infection. The model uniquely incorporates social behavioral aspects such as quarantine and quarantine violation. The model is further driven by people’s sentiments (positive and negative) which accounts for the influence of disinformation. People’s sentiments were obtained by parsing through and analyzing COVID-19 related tweets from Twitter, a social media platform across six countries. Our results show that our model incorporating public sentiments is able to capture the trend in the trajectory of the epidemic curve of the reported cases. Furthermore, our results show that positive public sentiments reduce disease burden in the community. Our results also show that quarantine violation and early discharge of the infected population amplifies the disease burden on the community. Hence, it is important to account for public sentiment and individual social behavior in epidemic models developed to study diseases like COVID-19.more » « less
-
Efficient contact tracing and isolation is an effective strategy to control epidemics. It was used effectively during the Ebola epidemic and successfully implemented in several parts of the world during the ongoing COVID-19 pandemic. An important consideration in contact tracing is the budget on the number of individuals asked to quarantine -- the budget is limited for socioeconomic reasons. In this paper, we present a Markov Decision Process (MDP) framework to formulate the problem of using contact tracing to reduce the size of an outbreak while asking a limited number of people to quarantine. We formulate each step of the MDP as a combinatorial problem, MinExposed, which we demonstrate is NP-Hard; as a result, we develop an LP-based approximation algorithm. Though this algorithm directly solves MinExposed, it is often impractical in the real world due to information constraints. To this end, we develop a greedy approach based on insights from the analysis of the previous algorithm, which we show is more interpretable. A key feature of the greedy algorithm is that it does not need complete information of the underlying social contact network. This makes the heuristic implementable in practice and is an important consideration. Finally, we carry out experiments on simulations of the MDP run on real-world networks, and show how the algorithms can help in bending the epidemic curve while limiting the number of isolated individuals. Our experimental results demonstrate that the greedy algorithm and its variants are especially effective, robust, and practical in a variety of realistic scenarios, such as when the contact graph and specific transmission probabilities are not known. All code can be found in our GitHub repository: this https URL.more » « less
-
An epidemic disease caused by coronavirus has spread all over the world with a strong contagion rate. We present simulations of epidemic models constructed using real data to give a clear perspective and confirmation on the effect of quarantine on the evolution of the infection and the number of infected, recovered, and dead because of this epidemic in South Carolina in a time window (December 1, 2020, to June 1, 2021) when the epidemic was relatively strong. We use CDC data for infected and dead populations covering the period December 1, 2020, to June 1, 2021 in South Carolina to develop models and do simulations. There were no data available for recovered populations in this period. Part of our goal is to estimate the number of recovered for the entire period. The models and results are consistent with the data. The infection and recovery increasing in South Carolina do not show improvement in this period. The number of dead people in this period tended to increase although by small amount. Optimal control methodologies are considered where transmission, recovery, relapse of immunity and death rates are considered as decision variables in minimizing the difference between the real and computed COVID-19 infection and dead data. Effect of quarantine as intervention strategy is also considered as it is critical issue. What we want to show is what could have been the outcome if quarantine had been implemented from the very beginning. The progress of an infection in general is related not only to the present states, but also to its historical states. To account for the effect of past evolution we add fractional differential equations models.more » « less
-
Efficient contact tracing and isolation is an effective strategy to control epidemics, as seen in the Ebola epidemic and COVID-19 pandemic. An important consideration in contact tracing is the budget on the number of individuals asked to quarantine—the budget is limited for socioeconomic reasons (e.g., having a limited number of contact tracers). Here, we present a Markov Decision Process (MDP) framework to formulate the problem of using contact tracing to reduce the size of an outbreak while limiting the number of people quarantined. We formulate each step of the MDP as a combinatorial problem, MinExposed, which we demonstrate is NP-Hard. Next, we develop two approximation algorithms, one based on rounding the solutions of a linear program and another (greedy algorithm) based on choosing nodes with a high (weighted) degree. A key feature of the greedy algorithm is that it does not need complete information of the underlying social contact network, making it implementable in practice. Using simulations over realistic networks, we show how the algorithms can help in bending the epidemic curve with a limited number of isolated individuals.more » « less
An official website of the United States government

